Skip to main content
Log in

Evolution equations governed by Lipschitz continuous non-autonomous forms

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

We prove L 2-maximal regularity of the linear non-autonomous evolutionary Cauchy problem

$$\dot u(t) + A(t)u(t) = f(t){\text{ for a}}{\text{.e}}{\text{. }}t \in \left[ {0,T} \right],{\text{ }}u(0) = {u_0}$$

, where the operator A(t) arises from a time depending sesquilinear form a(t, ·, ·) on a Hilbert space H with constant domain V. We prove the maximal regularity in H when these forms are time Lipschitz continuous. We proceed by approximating the problem using the frozen coefficient method developed by El-Mennaoui, Keyantuo, Laasri (2011), El-Mennaoui, Laasri (2013), and Laasri (2012). As a consequence, we obtain an invariance criterion for convex and closed sets of H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Arendt, C. J. K. Batty, M. Hieber, F. Neubrander: Vector-valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics 96, Birkhäuser, Basel, 2011.

    Book  MATH  Google Scholar 

  2. W. Arendt, R. Chill: Global existence for quasilinear diffusion equations in isotropic nondivergence form. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 9 (2010), 523–539.

    MATH  MathSciNet  Google Scholar 

  3. W. Arendt, D. Dier, H. Laasri, E. M. Ouhabaz: Maximal regularity for evolution equations governed by non-autonomous forms. Adv. Differ. Equ. 19 (2014), 1043–1066.

    MATH  MathSciNet  Google Scholar 

  4. W. Arendt, D. Dier, E. M. Ouhabaz: Invariance of convex sets for non-autonomous evolution equations governed by forms. J. Lond. Math. Soc., II. Ser. 89 (2014), 903–916.

    Article  MATH  MathSciNet  Google Scholar 

  5. C. Bardos: A regularity theorem for parabolic equations. J. Funct. Anal. 7 (1971), 311–322.

    Article  MATH  MathSciNet  Google Scholar 

  6. H. Brezis: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York, 2011.

    MATH  Google Scholar 

  7. R. Dautray, J.-L. Lions: Analyse mathématique et calcul numérique pour les sciences et les techniques. Volume 8: Évolution: semi-groupe, variationnel. Collection Enseignement, Masson, Paris, 1988. (In French.)

    Google Scholar 

  8. O. El-Mennaoui, V. Keyantuo, H. Laasri: Infinitesimal product of semigroups. Ulmer Seminare. Heft 16 (2011), 219–230.

    Google Scholar 

  9. B. Haak, O. El Maati: Maximal regularity for non-autonomous evolution equations. Version available at: http://arxiv.org/abs/1402.1136v1.

  10. T. Kato: Perturbation Theory for Linear Operators. Classics in Mathematics, Springer, Berlin, 1992.

    Google Scholar 

  11. H. Laasri: Probl`emes d’évolution et intégrales produits dans les espaces de Banach. Thèse de Doctorat, Faculté des science, Agadir, 2012, DOI 10.1007/s00208-015-1199-7. (In French.)

  12. H. Laasri, O. El-Mennaoui: Stability for non-autonomous linear evolution equations with L p-maximal regularity. Czech. Math. J. 63 (2013), 887–908.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. L. Lions: Équations différentielles opérationnelles et problèmes aux limites. Die Grundlehren der mathematischen Wissenschaften 111, Springer, Berlin, 1961. (In French.)

    MATH  Google Scholar 

  14. E. M. Ouhabaz: Analysis of Heat Equations on Domains. London Mathematical Society Monographs Series 31, Princeton University Press, Princeton, 2005.

    MATH  Google Scholar 

  15. E. M. Ouhabaz: Invariance of closed convex sets and domination criteria for semigroups. Potential Anal. 5 (1996), 611–625.

    Article  MATH  MathSciNet  Google Scholar 

  16. E. M. Ouhabaz, C. Spina: Maximal regularity for non-autonomous Schrödinger type equations. J. Differ. Equations 248 (2010), 1668–1683.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. E. Showalter: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Mathematical Surveys and Monographs 49, AMS, Providence, 1997.

    MATH  Google Scholar 

  18. A. Slavík: Product Integration, Its History and Applications. Dějiny Matematiky/History of Mathematics 29; Nečas Center for Mathematical Modeling Lecture Notes 1, Matfyzpress, Praha, 2007.

    MATH  Google Scholar 

  19. H. Tanabe: Equations of Evolution. Monographs and Studies in Mathematics 6, Pitman, London, 1979.

    MATH  Google Scholar 

  20. S. Thomaschewski: Form Methods for Autonomous and Non-Autonomous Cauchy Problems. PhD Thesis, Universität Ulm, 2003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Sani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sani, A., Laasri, H. Evolution equations governed by Lipschitz continuous non-autonomous forms. Czech Math J 65, 475–491 (2015). https://doi.org/10.1007/s10587-015-0188-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-015-0188-z

Keywords

MSC 2010

Navigation