Skip to main content
Log in

Global optimization of truss topology with discrete bar areas—Part I: theory of relaxed problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This two part paper considers the classical problem of finding a truss design with minimal compliance subject to a given external force and a volume bound. The design variables describe the cross-section areas of the bars. While this problem is well-studied for continuous bar areas, we treat here the case of discrete areas. This problem is of major practical relevance if the truss must be built from pre-produced bars with given areas. As a special case, we consider the design problem for a single bar area, i.e., a 0/1-problem.

In contrast to heuristic methods considered in other approaches, Part I of the paper together with Part II present an algorithmic framework for the calculation of a global optimizer of the underlying large-scaled mixed integer design problem. This framework is given by a convergent branch-and-bound algorithm which is based on solving a sequence of nonconvex continuous relaxations. The main issue of the paper and of the approach lies in the fact that the relaxed nonlinear optimization problem can be formulated as a quadratic program (QP). Here the paper generalizes and extends the available theory from the literature. Although the Hessian of this QP is indefinite, it is possible to circumvent the non-convexity and to calculate global optimizers. Moreover, the QPs to be treated in the branch-and-bound search tree differ from each other just in the objective function.

In Part I we give an introduction to the problem and collect all theory and related proofs for the treatment of the original problem formulation and the continuous relaxed problems. The implementation details and convergence proof of the branch-and-bound methodology and the large-scale numerical examples are presented in Part II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achtziger, W.: Topology optimization of discrete structures: an introduction in view of computational and nonsmooth aspects. In: Rozvany, G.I.N. (ed.) Topology Optimization in Structural Mechanics, pp. 57–100. Springer, Vienna (1997)

    Google Scholar 

  2. Achtziger, W.: Multiple load truss topology and sizing optimization: some properties of minimax compliance. J. Optim. Theory Appl. 98, 255–280 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Achtziger, W., Stolpe, M.: Global optimization of truss topology w.r.t. discrete bar areas—Part I: theory of relaxed problems. Technical Report 308, Department of Mathematics, University of Dortmund, Dortmund, Germany (2005)

  4. Achtziger, W., Stolpe, M.: Global optimization of truss topology with discrete bar areas—Part II: implementation and numerical results. Comput. Optim. Appl. (2006, submitted manuscript)

  5. Achtziger, W., Stolpe, M.: Truss topology optimization with discrete design variables—guaranteed global optimality and benchmark examples. Struct. Multidiscip. Optim. 34(1), 1–20 (2007)

    Article  MathSciNet  Google Scholar 

  6. Achtziger, W., Bendsøe, M.P., Ben-Tal, A., Zowe, J.: Equivalent displacement based formulations for maximum strength truss topology design. Impact Comput. Sci. Eng. 4, 315–345 (1992)

    Article  MATH  Google Scholar 

  7. Ben-Tal, A., Bendsøe, M.P.: A new method for optimal truss topology design. SIAM J. Optim. 3(2), 322–358 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ben-Tal, A., Nemirovski, A.: Potential reduction polynomial time method for truss topology design. SIAM J. Optim. 4(3), 596–612 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ben-Tal, A., Nemirovski, A.: Optimal design of engineering structures. OPTIMA Math. Program. Soc. Newsl. 47 (1995)

  10. Ben-Tal, A., Nemirovski, A.: Robust truss topology design via semidefinite programming. SIAM J. Optim. 7(4), 991–1016 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ben-Tal, A., Nemirovski, A.: Structural design. In: Handbook of Semidefinite Programming, pp. 443–467. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  12. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. Society for Industrial and Applied Mathematics, Philadelphia (2001)

    MATH  Google Scholar 

  13. Ben-Tal, A., Teboulle, M.: Hidden convexity in some nonconvex quadratically constrained quadratic programming. Math. Program. 72(1), 51–63 (1996)

    Article  MathSciNet  Google Scholar 

  14. Bendsøe, M.P., Sigmund, O.: Topology Optimization—Theory, Methods and Applications. Springer, Berlin (2003)

    Google Scholar 

  15. Blum, E., Oettli, W.: Direct proof of the existence theorem in quadratic programming. Oper. Res. 20, 165–167 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dorn, W.S., Gomory, R.E., Greenberg, H.J.: Automatic design of optimal structures. J. Méc. 3, 25–52 (1964)

    Google Scholar 

  17. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Nav. Res. Logist. Q. 3, 95–110 (1956)

    Article  MathSciNet  Google Scholar 

  18. Friedlander, M.P., Leyffer, S.: Gradient projection for general quadratic programs. Technical Report ANL/MCS-P1370-0906, Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, IL, U.S.A. (Sept. 2006)

  19. Gill, P.E., Murray, W.: Numerically stable methods for quadratic programming. Math. Program. 14, 349–372 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: Inertia-controlling methods for general quadratic programming. SIAM Rev. 33, 1–36 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gould, N., Toint, Ph.: An iterative working-set method for large-scale nonconvex quadratic programming. Appl. Numer. Math. 43(1-2), 109–128 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gould, N., Toint, Ph.: Numerical methods for large-scale non-convex quadratic programming. In: Siddiqi, A.H., Kočvara, M. (eds.) Trends in Industrial and Applied Mathematics, pp. 149–179. Kluwer Academic, Dordrecht (2002)

    Google Scholar 

  23. Groenwold, A.A., Stander, N., Snyman, J.A.: A pseudo-discrete rounding method for structural optimization. Struct. Optim. 11, 218–227 (1996)

    Article  Google Scholar 

  24. Hajela, P., Lee, E.: Genetic algorithms in truss topology optimization. Int. J. Solids Struct. 32(22), 3341–3357 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jarre, F., Kočvara, M., Zowe, J.: Optimal truss design by interior point methods. SIAM J. Optim. 8(4), 1084–1107 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kane, C., Schoenauer, M.: Topological optimum design using genetic algorithms. Control Cybern. 25(5), 1059–1087 (1996)

    MathSciNet  MATH  Google Scholar 

  27. Luo, Z.-Q., Zhang, S.: On extensions of the Frank-Wolfe theorems. Comput. Optim. Appl. 13, 87–110 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. The Numerical Algorithms Group Limited, Oxford, U.K. NAG Fortran Library Manual, Mark 21 edn. (2006)

  29. Ringertz, U.: On methods for discrete structural optimization. Eng. Optim. 13, 44–64 (1988)

    Google Scholar 

  30. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  31. Rozvany, G.I.N., Bendsøe, M.P., Kirsch, U.: Layout optimization of structures. Appl. Mech. Rev. 48, 41–119 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Achtziger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achtziger, W., Stolpe, M. Global optimization of truss topology with discrete bar areas—Part I: theory of relaxed problems. Comput Optim Appl 40, 247–280 (2008). https://doi.org/10.1007/s10589-007-9138-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-007-9138-5

Keywords

Navigation