Skip to main content
Log in

Neural networks for solving second-order cone constrained variational inequality problem

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider using the neural networks to efficiently solve the second-order cone constrained variational inequality (SOCCVI) problem. More specifically, two kinds of neural networks are proposed to deal with the Karush-Kuhn-Tucker (KKT) conditions of the SOCCVI problem. The first neural network uses the Fischer-Burmeister (FB) function to achieve an unconstrained minimization which is a merit function of the Karush-Kuhn-Tucker equation. We show that the merit function is a Lyapunov function and this neural network is asymptotically stable. The second neural network is introduced for solving a projection formulation whose solutions coincide with the KKT triples of SOCCVI problem. Its Lyapunov stability and global convergence are proved under some conditions. Simulations are provided to show effectiveness of the proposed neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aghassi, M., Bertsimas, D., Perakis, G.: Solving asymmetric variational inequalities via convex optimization. Oper. Res. Lett. 34, 481–490 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Nashua (1995)

    MATH  Google Scholar 

  3. Chen, J.-S.: The semismooth-related properties of a merit function and a decent method for the nonlinear complementarity problem. J. Glob. Optim. 36, 565–580 (2006)

    Article  MATH  Google Scholar 

  4. Chen, J.-S., Gao, H.-T., Pan, S.-H.: An R-linearly convergent derivative-free algorithm for nonlinear complementarity problems based on the generalized Fischer-Burmeister merit function. J. Comput. Appl. Math. 232, 455–471 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, J.-S., Ko, C.-H., Pan, S.-H.: A neural network based on the generalized Fischer-Burmeister function for nonlinear complementarity problems. Inf. Sci. 180, 697–711 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, J.-S., Pan, S.-H.: A family of NCP functions and a descent method for the nonlinear complementarity problem. Comput. Optim. Appl. 40, 389–404 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, J.-S., Tseng, P.: An unconstrained smooth minimization reformulation of the second-order cone complementarity problem. Math. Program. 104, 293–327 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X., Qi, L., Sun, D.: Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities. Math. Comput. 67(222), 519–540 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dang, C., Leung, Y., Gao, X., Chen, K.: Neural networks for nonlinear and mixed complementarity problems and their applications. Neural Netw. 17, 271–283 (2004)

    Article  MATH  Google Scholar 

  10. Effati, S., Ghomashi, A., Nazemi, A.R.: Applocation of projection neural network in solving convex programming problems. Appl. Math. Comput. 188, 1103–1114 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Effati, S., Nazemi, A.R.: Neural network and its application for solving linear and quadratic programming problems. Appl. Math. Comput. 172, 305–331 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fukushima, M.: Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Program. 53(1), 99–110 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Facchinei, F., Pang, J.: Finite-dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  14. Fukushima, M., Luo, Z.-Q., Tseng, P.: Smoothing functions for second-order-cone complimentarity problems. SIAM J. Optim. 12, 436–460 (2002)

    Article  MathSciNet  Google Scholar 

  15. Golden, R.: Mathematical Methods for Neural Network Analysis and Design. MIT Press, Cambridge (1996)

    Google Scholar 

  16. Hammond, J.: Solving asymmetric variational inequality problems and systems of equations with generalized nonlinear programming algorithms. Ph.D. Dissertation, Department of Mathematics, MIT, Cambridge (1984)

  17. Han, Q., Liao, L.-Z., Qi, H., Qi, L.: Stability analysis of gradient-based neural networks for optimization problems. J. Glob. Optim. 19, 363–381 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Harker, P., Pang, J.-S.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. 48, 161–220 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hartman, P., Stampacchia, G.: On some nonlinear elliptic differential functional equations. Acta Math. 115, 271–310 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hopfield, J.J., Tank, D.W.: Neural computation of decision in optimization problems. Biol. Cybern. 52, 141–152 (1985)

    MathSciNet  MATH  Google Scholar 

  21. Hu, X., Wang, J.: Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network. IEEE Trans. Neural Netw. 17, 1487–1499 (2006)

    Article  Google Scholar 

  22. Hu, X., Wang, J.: A recurrent neural network for solving a class of general variational inequalities. IEEE Trans. Syst. Man Cybern. B 37, 528–539 (2007)

    Article  Google Scholar 

  23. Kanzow, C., Ferenczi, I., Fukushima, M.: On the local convergence of semismooth Newton methods for linear and nonlinear second-order cone programs without strict complementarity. SIAM J. Optim. 20, 297–320 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kennedy, M.P., Chua, L.O.: Neural network for nonlinear programming. IEEE Trans. Circuits Syst. 35, 554–562 (1988)

    Article  MathSciNet  Google Scholar 

  25. Kanno, Y., Martins, J.A.C., Pinto da Costa, A.: Three-dimensional quasi-static frictional contact by using second-order cone linear complementarity problem. Int. J. Numer. Methods Eng. 65, 62–83 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, San Diego (1980)

    MATH  Google Scholar 

  27. Ko, C.-H., Chen, J.-S., Yang, C.-Y.: A recurrent neural network for solving nonlinear second-order cone programs. Submitted manuscript (2009)

  28. Liao, L.-Z., Qi, H., Qi, L.: Solving nonlinear complementarity problems with neural networks: a reformulation method approach. J. Comput. Appl. Math. 131, 342–359 (2001)

    Article  MathSciNet  Google Scholar 

  29. Lions, J., Stampacchia, G.: Variational inequalities. Commun. Pure Appl. Math. 20, 493–519 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mancino, O., Stampacchia, G.: Convex programming and variational inequalities. J. Optim. Theory Appl. 9, 3–23 (1972)

    Article  MathSciNet  Google Scholar 

  31. Miller, R.K., Michel, A.N.: Ordinary Differential Equations. Academic Press, San Diego (1982)

    MATH  Google Scholar 

  32. Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. Academic Press, San Diego (1970)

    MATH  Google Scholar 

  33. Pan, S.-H., Chen, J.-S.: A semismooth Newton method for the SOCCP based on a one-parametric class of SOC complementarity functions. Comput. Optim. Appl. 45, 59–88 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Patriksson, M.: Nonlinear Programming and Variational Inequality Problems: A Unified Approach. Applied Optimization, vol. 23. Dordrecht, Kluwer (1998)

    Google Scholar 

  35. Stampacchia, G.: Formes bilineares coercives sur les ensembles convexes. C. R. Acad. Sci. Paris 258, 4413–4416 (1964)

    MathSciNet  MATH  Google Scholar 

  36. Stampacchia, G.: Variational inequalities. Theory and applications of monotone operators. In: Proceedings of the NATO Advanced Study Institute, pp. 101–192, Venice (1968)

    Google Scholar 

  37. Sun, J.-H., Zhang, L.-W.: A globally convergent method based on Fischer-Burmeister operators for solving second-order-cone constrained variational inequality problems. Comput. Math. Appl. 58, 1936–1946 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tank, D.W., Hopfield, J.J.: Simple neural optimization network: an A/D converter, signal decision circuit, and a linear programming circuit. IEEE Trans. Circuits Syst. 33, 533–541 (1986)

    Article  Google Scholar 

  39. Wright, S.J.: An infeasible-interior-point algorithm for linear complementarity problems. Math. Program. 67, 29–51 (1994)

    Article  MATH  Google Scholar 

  40. Xia, Y., Leung, H., Wang, J.: A projection neural network and its application to constrained optimization problems. IEEE Trans. Circuits Syst. I 49, 447–458 (2002)

    Article  MathSciNet  Google Scholar 

  41. Xia, Y., Leung, H., Wang, J.: A general projection neural network for solving monotone variational inequalities and related optimization problems. IEEE Trans. Neural Netw. 15, 318–328 (2004)

    Article  Google Scholar 

  42. Xia, Y., Wang, J.: A recurrent neural network for solving nonlinear convex programs subject to linear constraints. IEEE Trans. Neural Netw. 16, 379–386 (2005)

    Article  Google Scholar 

  43. Yashtini, M., Malek, A.: Solving complementarity and variational inequalities problems using neural networks. Appl. Math. Comput. 190, 216–230 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zak, S.H., Upatising, V., Hui, S.: Solving linear programming problems with neural networks: a comparative study. IEEE Trans. Neural Netw. 6, 94–104 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jein-Shan Chen.

Additional information

J. Sun is also affiliated with Department of Mathematics, National Taiwan Normal University.

J.-S. Chen is member of Mathematics Division, National Center for Theoretical Sciences, Taipei Office. The author’s work is partially supported by National Science Council of Taiwan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J., Chen, JS. & Ko, CH. Neural networks for solving second-order cone constrained variational inequality problem. Comput Optim Appl 51, 623–648 (2012). https://doi.org/10.1007/s10589-010-9359-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-010-9359-x

Keywords

Navigation