Skip to main content
Log in

Copositivity tests based on the linear complementarity problem

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We present copositivity tests based on new necessary and sufficient conditions which require the solution of linear complementarity problems (LCP). We propose methodologies involving Lemke’s method, an enumerative algorithm and a linear mixed-integer programming formulation to solve the required LCPs. Moreover, we discuss a new necessary condition for (strict) copositivity based on solving a linear program, which can be used as a preprocessing step. The algorithms with these three different variants are thoroughly applied to test matrices from the literature and to max-clique instances with matrices of order up to \(496\times 496\). We compare our procedures with three other copositivity tests from the literature as well as with a general global optimization solver. The numerical results are very promising and equally good and in many cases better than the results reported elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adler, I., Verma, S.: The Linear Complementarity Problem, Lemke Algorithm, Perturbation, and the Complexity Class PPAD. Manuscript, Department of IEOR, University of California, Berkeley (2011)

  2. Bomze, I.M.: Copositive optimization - recent developments and applications. Eur. J. Oper. Res. 216, 509–520 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bomze, I.M., Eichfelder, G.: Copositivity detection by difference-of-convex decomposition and \(\omega \)-subdivision. Math. Program. Ser. A 138, 365–400 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bomze, I.M., Dür, M., de Klerk, E., Roos, C., Quist, A.J., Terlaky, T.: On copositive programming and standard quadratic optimization problems. J. Glob. Optim. 13, 369–387 (1998)

    Article  MATH  Google Scholar 

  5. Bomze, I.M., Schachinger, W., Uchida, G.: Think co(mpletely)positive ! Matrix properties, examples and a clustered bibliography on copositive optimization. J. Glob. Optim. 52, 425–445 (2012)

    MathSciNet  Google Scholar 

  6. Brooke, A., Kendrick, D., Meeraus, A., Raman, R.: GAMS a User’s Guide. GAMS Development Corporation, Washington (1998)

    Google Scholar 

  7. Bundfuss, S.: Copositive Matrices, Copositive Programming, and Applications. Dissertation, Technischen Universität Darmstadt (2009)

  8. Bundfuss, S., Dür, M.: Algorithmic copositivity detection by simplicial partition. Linear Algebra Appl. 428, 1511–1523 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. 120, 479–495 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burer, S.: Copositive programming. In: Anjos, M.F., Lasserre, J.-B. (eds.) Handbook of Semidefinite, Cone and Polynomial Optimization: Theory. Algorithms,Software and Applications. Operations Research and Management Science. Springer, Berlin (2011)

    Google Scholar 

  11. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. SIAM, New York (2009)

    Book  MATH  Google Scholar 

  12. CPLEX, I.: 11.0 Users Manual. ILOG SA, Gentilly (2008)

  13. de Klerk, E., Pasechnik, D.V.: Approximation of the stability number of a graph via copositive programming. SIAM J. Optim. 12, 875–892 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. DIMACS: Second DIMACS Challenge. Test instances available at http://dimacs.rutgers.edu/challenges. Accessed 13 Jan 2010

  15. Dür, M.: Copositive programming—a survey. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds.) Recent Advances in Optimization and its Applications in Engineering, pp. 3–20. Springer, New York (2010)

    Chapter  Google Scholar 

  16. Eichfelder, G., Jahn, J.: Set-semidefinite optimization. J. Convex Anal. 15, 767–801 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  18. Hall Jr, M., Newman, M.: Copositive and completely positive quadratic forms. Proc. Camb. Philos. Soc. 59, 329–339 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hiriart-Urruty, J.-B., Seeger, A.: A variational approach to copositive matrices. SIAM Rev. 52, 593–629 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hoffman, A.J., Pereira, F.: On copositive matrices with \(-\)1,0,1 entries. J. Combin. Theory A 14, 302–309 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  21. Horst, R., Pardalos, P.M., Thoai, N.: Introduction to Global Optimization. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  22. Júdice, J., Faustino, A., Ribeiro, I.: On the solution of NP-hard linear complementarity problems. Top 10, 125–145 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kaplan, W.: A copositivity probe. Linear Algebra Appl. 337, 237–251 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Moler, C., Little, J., Bangert, S.: Mass. Matlab User’s Guide—The Language of Technical Computing. The MathWorks, Sherborn (2001)

    Google Scholar 

  25. Murtagh, B., Saunders, M., Murray, W., Gill, P., Raman, R., Kalvelagen, E.: MINOS-NLP. Systems Optimization Laboratory, Stanford University, Palo Alto (2002)

    Google Scholar 

  26. Murty, K.G.: Linear Complementarity. Linear and Nonlinear Programming. Heldermann, Berlin (1988)

    MATH  Google Scholar 

  27. Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and linear programming. Math. Progr. 39, 117–129 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sahinidis, N., Tawarmalani, M.: BARON 7.2.5: Global Optimization of Mixed-Integer Nonlinear Programs. GAMS Development Corporation, Washington (2005)

    Google Scholar 

  29. Sponsel, J., Bundfuss, S., Dür, M.: An improved algorithm to test copositivity. J. Glob. Optim. 52, 537–551 (2012)

    Article  MATH  Google Scholar 

  30. Tanaka, A., Yoshise, A.: An LP-based algorithm to test copositivity. Pac. J. Optim. 11(1), 101–120 (2015)

    MathSciNet  Google Scholar 

  31. Väliaho, H.: Criteria for copositive matrices. Linear Algebra Appl. 81, 19–34 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  32. Väliaho, H.: Quadratic-programming criteria for copositive matrices. Linear Algebra Appl. 119, 163–182 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  33. Žilinskas, J., Dür, M.: Depth-first simplicial partition for copositivity detection, with an application to Maxclique. Optim. Methods. Softw. 26, 499–510 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work of the first author was partially supported by the Portuguese Foundation for Science and Technology through the Project UID/MAT/00297/2013 (CMA). The research of the third author was in the scope of R&D Unit 50008, financed by the applicable financial framework (FCT/MEC through national funds and when applicable co-funded by FEDER PT2020 partnership agreement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Eichfelder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brás, C., Eichfelder, G. & Júdice, J. Copositivity tests based on the linear complementarity problem. Comput Optim Appl 63, 461–493 (2016). https://doi.org/10.1007/s10589-015-9772-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-015-9772-2

Keywords

Mathematics Subject Classification

Navigation