Skip to main content
Log in

Euler discretization for a class of nonlinear optimal control problems with control appearing linearly

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We investigate Euler discretization for a class of optimal control problems with a nonlinear cost functional of Mayer type, a nonlinear system equation with control appearing linearly and constraints defined by lower and upper bounds for the controls. Under the assumption that the cost functional satisfies a growth condition we prove for the discrete solutions Hölder type error estimates w.r.t. the mesh size of the discretization. If a stronger second-order optimality condition is satisfied the order of convergence can be improved. Numerical experiments confirm the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alt, W.: On the approximation of infinite optimization problems with an application to optimal control problems. Appl. Math. Optim. 12, 15–27 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alt, W.: Local stability of solutions to differentiable optimization problems in Banach spaces. J. Optim. Theory Appl. 70, 443–466 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alt, W.: Discretization and mesh-independence of Newton’s method for generalized equations. In: Fiacco, A.V. (ed.) Mathematical Programming with Data Perturbations V. Lecture Notes in Pure and Applied Mathematics, vol. 195, pp. 1–30. Marcel Dekker, New York (1997)

    Google Scholar 

  4. Alt, W., Baier, R., Gerdts, M., Lempio, F.: Error bounds for Euler approximation of linear-quadratic control problems with bang–bang solutions. Numer. Algebra Control Optim. 2(3), 547–570 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alt, W., Mackenroth, U.: Convergence of finite element approximations to state constrained convex parabolic boundary control problems. SIAM J. Control Optim. 27, 718–736 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alt, W., Schneider, C., Seydenschwanz, M.: Regularization and implicit Euler discretization of linear-quadratic optimal control problems with bang-bang solutions. Appl. Math. Comput. (2016). https://doi.org/10.1016/j.amc.2016.04.028

    MathSciNet  Google Scholar 

  7. Alt, W., Seydenschwanz, M.: An implicit discretization scheme for linear-quadratic control problems with bang–bang solutions. Optim. Methods Softw. 29(3), 535–560 (2014). https://doi.org/10.1080/10556788.2013.821612

    Article  MathSciNet  MATH  Google Scholar 

  8. Deckelnick, K., Hinze, M.: A note on the approximation of elliptic control problems with bang–bang controls. Comput. Optim. Appl. 51(2), 931–939 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dhamo, V., Tröltzsch, F.: Some aspects of reachability for parabolic boundary control problems with control constraints. Comput. Optim. Appl. 50(1), 75–110 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dontchev, A.L., Hager, W.W.: Lipschitzian stability in nonlinear control and optimization. SIAM J. Control Optim. 31(3), 569–603 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dontchev, A.L., Hager, W.W.: The Euler approximation in state constrained optimal control. Math. Comput. 70, 173–203 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dontchev, A.L., Hager, W.W., Malanowski, K.: Error bounds for Euler approximation of a state and control constrained optimal control problem. Numer. Funct. Anal. Optim. 21, 653–682 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dontchev, A.L., Hager, W.W., Veliov, V.M.: Second-order Runge–Kutta approximations in control constrained optimal control. SIAM J. Numer. Anal. 38, 202–226 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dontchev, A.L., Veliov, V.M.: Metric regularity under approximations. Control Cybern. 38(4B), 1283–1303 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Felgenhauer, U.: On stability of bang–bang type controls. SIAM J. Control Optim. 41(6), 1843–1867 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Felgenhauer, U.: Optimality properties of controls with bang–bang components in problems with semilinear state equation. Control Cybern. 34(3), 764–785 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Felgenhauer, U.: The shooting approach in analyzing bang–bang extremals with simultaneous control switches. Control Cybern. 37(2), 307–327 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Felgenhauer, U.: Note on local quadratic growth estimates in bang–bang optimal control problems. Optimization 64(3), 521–537 (2015). https://doi.org/10.1080/02331934.2013.773000

    MathSciNet  MATH  Google Scholar 

  19. Felgenhauer, U.: Discretization of semilinear bang-singular-bang control problems. Comput. Optim. Appl. 64, 295–326 (2016). https://doi.org/10.1007/s10589-015-9800-2

    Article  MathSciNet  MATH  Google Scholar 

  20. Felgenhauer, U., Poggiolini, L., Stefani, G.: Optimality and stability result for bang–bang optimal controls with simple and double switch behaviour. Control Cybern. 38, 1305–1325 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Haunschmied, J.L., Pietrus, A., Veliov, V.M.: The Euler method for linear control systems revisited. In: Large-Scale Scientific Computing—9th International Conference, LSSC 2013, Sozopol, Bulgaria, pp. 90–97, 3–7 June 2013. Revised Selected Papers (2013)

  22. Ioffe, A., Tihomirov, V.M.: Theorie der Extremalwertaufgaben. VEB Deutscher Verlag der Wissenschaften, Berlin (1979)

    Google Scholar 

  23. Kaya, C.Y., Lucas, S.K., Simakov, S.T.: Computations for bang–bang constrained optimal control using a mathematical programming formulation. Optim. Control Appl. Methods 25, 295–308 (2004). https://doi.org/10.1002/oca.749

    Article  MathSciNet  MATH  Google Scholar 

  24. Malanowski, K.: Stability and sensitivity of solutions to optimal control problems for systems with control appearing linearly. Appl. Math. Optim. 16, 73–91 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  25. Malanowski, K.: Stability and sensitivity of solutions to nonlinear optimal control problems. Appl. Math. Optim. 32, 111–141 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Malanowski, K.: Stability and sensitivity analysis for optimal control problems. A survey. Trudy Inst. Mat. i Mekh. UrO RAN 16(5), 278–288 (2010)

    Google Scholar 

  27. Malanowski, K., Büskens, C., Maurer, H.: Convergence of approximations to nonlinear optimal control problems. In: Fiacco, A.V. (ed.) Mathematical Programming with Data Perturbations V. Lecture Notes in Pure and Applied Mathematics, vol. 195, pp. 253–284. Marcel Dekker, New York (1997)

    Google Scholar 

  28. Maurer, H.: First- and second order sufficient optimality conditions in mathematimacal programming and optimal control. Math. Program. Study 14, 163–177 (1981)

    Article  MATH  Google Scholar 

  29. Maurer, H., Büskens, C., Kim, J.H.R., Kaya, C.Y.: Optimization methods for the verification of second-order sufficient conditions for bang–bang controls. Optim. Control Appl. Methods 26(3), 129–156 (2005)

    Article  MathSciNet  Google Scholar 

  30. Maurer, H., Osmolovskii, N.P.: Second order sufficient conditions for time optimal bang–bang controls. SIAM J. Control Optim. 42(6), 2239–2263 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Maurer, H., Zowe, J.: First- and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems. Math. Program. 16, 98–110 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  32. Osmolovskii, N.P., Maurer, H.: Equivalence of second order optimality conditions for bang–bang control problems. Part 1: main results. Control Cybern. 34(3), 927–950 (2005)

    MATH  Google Scholar 

  33. Osmolovskii, N.P., Maurer, H.: Equivalence of second order optimality conditions for bang–bang control problems. Part 2: proofs, variational derivatives and representations. Control Cybern. 36(1), 5–45 (2007)

    MATH  Google Scholar 

  34. Osmolovskii, N.P., Maurer, H.: Applications to Regular and Bang–Bang Control: Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control. SIAM, Philadelphia (2012)

    Book  MATH  Google Scholar 

  35. Pietrus, A., Scarinci, T., Veliov, V.M.: High Order Discrete Approximations to Mayer’s Problems for Linear Systems. Technical Report, TU Wien, ORCOS (2016)

  36. Quincampoix, M., Veliov, V.M.: Metric regularity and stability of optimal control problems for linear systems. SIAM J. Control Optim. 51(5), 4118–4137 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Robinson, S.M.: Regularity and stability for convex multivalued functions. Math. Oper. Res. 1, 130–143 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  38. Robinson, S.M.: Stability theory for systems of inequalities, Part II: differentiable nonlinear systems. SIAM J. Numer. Anal. 13(4), 497–513 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sendov, B., Popov, V.A.: The averaged Moduli of Smoothness. Wiley, Chichester (1988)

    MATH  Google Scholar 

  40. Seydenschwanz, M.: Convergence results for the discrete regularization of linear-quadratic control problems with bang–bang solutions. Comput. Optim. Appl. 61, 731–760 (2015). https://doi.org/10.1007/s10589-015-9730-z

    Article  MathSciNet  MATH  Google Scholar 

  41. Veliov, V.M.: Error analysis of discrete approximations to bang–bang optimal control problems: the linear case. Control Cybern. 34(3), 967–982 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their careful reading of the manuscript and their constructive and valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Alt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alt, W., Felgenhauer, U. & Seydenschwanz, M. Euler discretization for a class of nonlinear optimal control problems with control appearing linearly. Comput Optim Appl 69, 825–856 (2018). https://doi.org/10.1007/s10589-017-9969-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-017-9969-7

Keywords

Mathematics Subject Classification

Navigation