Skip to main content
Log in

Genetic diversity and differentiation of the endangered Japanese endemic tree Magnolia stellata using nuclear and chloroplast microsatellite markers

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Genetic diversity and differentiation were analyzed in 11 populations of Magnolia stellata (Sieb. and Zucc.) Maxim. (Magnoliaceae) in the Tokai district, Japan. Variation at four nuclear microsatellite (nSSR) loci was examined, three chloroplast microsatellite (cpSSR) markers were developed and 13 haplotypes identified. The 11 populations were divided into three groups (A, B and C). Each population within the group was separated less than 40 km. Group B harbored the highest gene diversity (H) and allelic richness (Ar) for nSSR (H=0.74 and Ar=8.02). Group C had the highest diversity of chloroplast haplotypes (H=0.79 and Ar=6.8): 2.5 times more haplotypes than the other groups. Each population contributed differently to the total diversity, with respect to nSSR and cpSSR. AMOVA revealed that 58% of haplotypic and 15% of nSSR variation was partitioned among populations within groups. A Mantel test revealed significant correlations between population pairwise geographic ln(distance) and FST/(1−FST) for both nSSR (r=0.479; P=0.001) and cpSSR (r=0.230; P=0.040). Dendrograms of populations for nSSR, based on Nei’s genetic distance, were constructed using UPGMA and the neighbor-joining method. These results suggest that populations in group C have diverged from the other populations, while those in group B are similar to each other. For group B, fragmentation between populations should be avoided in order to maintain gene flow. For group C, the uniqueness of each population should be given the highest priority when planning genetic conservation measures for the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avise JC (1994) Molecular Markers, Natural History and Evolution. Chapman & Hall, New York

    Google Scholar 

  • Bacles CFE, Lowe AJ, Ennos RA (2004). Genetic effects of chronic habitat fragmentation on tree species: the case of Sorbus aucuparia in a deforested Scottish landscape. Mol. Ecol. 13: 573–584

    Article  PubMed  CAS  Google Scholar 

  • Birky CW, Jr. (1995) Evolution and variation in plant chloroplast and mitochondrial genomes. In: Gottlieb LD, Jain SK (eds). Plant Evolutionary Biology. Chapman & Hall Ltd., London, pp. 23–53

    Google Scholar 

  • Callaway DJ (1994) The world of magnolias. Timber Press, Portland Oregon

    Google Scholar 

  • Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol. Ecol. 4: 129–131

    PubMed  CAS  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree (Argania spinosa (L.) Skeels) endemic to Morocco. Theor. Appl. Genet. 92: 832–839

    Article  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu. Rev. Ecol. Syst. 24: 217–242

    Article  Google Scholar 

  • Ennos RA (1994) Estimating the relative rates of pollen and seed migration among plant populations. Heredity 72: 250–259

    Google Scholar 

  • Environmental Agency Government of Japan (1997) The Japanese plant red list. Environmental Agency Government of Japan, Tokyo

    Google Scholar 

  • Eldridge MDB, Rummery C, Bray C, Zenger KR, Browning TL, Close RL (2004) Genetic analysis of a population crash in brush-tailed rock-wallabies (Petrogale penicillata) from Jenolan Caves, south-eastern Australia. Wildlife Res. 31: 229–240

    Article  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491

    PubMed  CAS  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longman, Harlow

    Google Scholar 

  • Fischer M, Matthies D (1998) RAPD variation in relation to population size and plant fitness in the rare Gentianella germanica (Gentianaceae). Am. J. Bot. 85: 811–819

    Article  CAS  Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv. Biol. 10: 1500–1508

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Gilpin ME, Soulé ME (1986) Minimum viable populations: process of species extinction. In: Soulé ME (eds). Conservation biology: the science of scarcity and diversity. Sinauer, Sunderland MA, pp. 19–34

    Google Scholar 

  • Gotoh T, Hamashima S, Kikuchi T (1998) A vegetative regeneration habit of Magnolia tomentosa Thunb. J. Phytogeogr. Taxon. 46: 205–209

    Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): A computer program to calculate F-statistics. J. Hered. 86: 485–486

    Google Scholar 

  • Hartl DL, Clark AG (1997) Principles of population genetics. Sinauer Associates, Sunderland MA

    Google Scholar 

  • Hedrick PW (1999). Highly variable loci and their interpretation in evolution and conservation. Evolution 53:313–318

    Article  Google Scholar 

  • Honjo M, Ueno S, Tsumura Y, Washitani I, Ohsawa R (2004) Phylogeographic study based on intraspecific sequence variation of chloroplast DNA for the conservation of genetic diversity in the Japanese endangered species Primula sieboldii. Biol. Conserv. 120: 211–220

    Article  Google Scholar 

  • Isagi Y, Kanazashi T, Suzuki W, Tanaka H, Abe T (1999) Polymorphic microsatellite DNA markers for Magnolia obovata Thunb. and their utility in related species. Mol. Ecol. 8: 698–700

    PubMed  CAS  Google Scholar 

  • Japan Association for Shidekobushi Conservation (1996) Wild stand of Shidekobushi (Star magnolia) in Japan. Japan Association for Shidekobushi Conservation, Mizunami

    Google Scholar 

  • Kawahara T, Yoshimaru H (1995) Shidekobushi to sono identekihen’i. Puranta 39: 9–13

    Google Scholar 

  • Kikuchi S, Isagi Y (2002). Microsatellite genetic variation in small and isolated populations of Magnolia sieboldii ssp. japonica. Heredity 88: 313–321

    Article  PubMed  CAS  Google Scholar 

  • Kitamura S, Murata G (1979). Coloured illustrations of woody plants of Japan. Hoikusha publishing Co., LTD., Osaka

    Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17: 1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Lande R (1998) Anthropogenic, ecological and genetic factors in extinction and conservation. Res. Popul. Ecol. (Kyoto) 40: 259–269

    Google Scholar 

  • Linhart YB, Mitton JB (1985) Relationships among reproduction, growth rates, and protein heterozygosity in ponderosa pine. Am. J. Bot. 72: 181–184

    Article  Google Scholar 

  • Lira CF, Cardoso SR, Ferreira PC, Cardoso MA, Provan J (2003) Long-term population isolation in the endangered tropical tree species Caesalpinia echinata Lam. revealed by chloroplast microsatellites. Mol. Ecol. 12: 3219–3225

    Article  PubMed  CAS  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209–220

    PubMed  CAS  Google Scholar 

  • Matsuda H, Serizawa S, Ueda K, Kato T, Yahara T (2003) Assessing the impact of the Japanese 2005 World Exposition Project on vascular plants′ risk of extinction. Chemosphere 53: 325–336

    Article  PubMed  CAS  Google Scholar 

  • Minamikawa M (1990) A new locality of Magnolia stellata Thumb. and the species composition of the Magnolia stellata-community. Bull. Biogeogr.l Soc. Jpn. 45: 137–143

    Google Scholar 

  • Moritz C (1994) Defining ′Evolutionary Significant Units′ for conservation. Trends Ecol. Evol. 9: 373–375

    Article  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am. Nat. 106: 283–292

    Article  Google Scholar 

  • Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York

    Google Scholar 

  • Oddou-Muratorio S, Petit RJ, Le Guerroue B, Guesnet D, Demesure B (2001). Pollen- versus seed-mediated gene flow in a scattered forest tree species. Evolution 55: 1123–1135

    PubMed  CAS  Google Scholar 

  • Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv. Biol. 12: 844–855

    Article  Google Scholar 

  • Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Muller-Starck G, Demesure-Musch B, Palme A, Martin JP, Rendell S, Vendramin GG (2003). Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300: 1563–1565

    Article  PubMed  CAS  Google Scholar 

  • Powell W, Morgante M, McDevitt R, Vendramin GG, Rafalski JA (1995) Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. Proc. Natl. Acad. Sci. U.S.A. 92: 7759–7763

    Article  PubMed  CAS  Google Scholar 

  • Rousset F (1997). Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145: 1219–1228

    PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425

    PubMed  CAS  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin: A Software for Population Genetics Data Analysis. Ver 2.000. Genetics and Biometry Lab, Department of Anthropology, University of Geneva

  • Slatkin M (1985) Rare alleles as indicators of gene flow. Evolution 39: 53–63

    Article  Google Scholar 

  • Squirrell J, Hollingsworth PM, Woodhead M , et al. (2003) How much effort is required to isolate nuclear microsatellites from plants?. Mol. Ecol. 12: 1339–1348

    Article  PubMed  CAS  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol. 17: 1105–1109

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y (1997) Extinction of populations due to inbreeding depression with demographic disturbances. Res. Popul. Ecol. (Kyoto) 39: 57–66

    Google Scholar 

  • Tanaka Y (2000) Extinction of populations by inbreeding depression under stochastic environments. Popul. Ecol. 42: 55–62

    Article  Google Scholar 

  • Ueda K (1987) Notes on the Magnoliaceae. Acta Phytotaxon. Geobot. 38: 339–348

    Google Scholar 

  • Ueda K (1988) Star magnolia (Magnolia tomentosa) - an indigenous Japanese plant. J. Arnold Arbor. 69: 281–288

    Google Scholar 

  • Ueda K (1989) Phytogeography of Tokai hilly land element I. Definition. Acta Phytotaxon. Geobot. 40: 190–202

    Google Scholar 

  • Vergeer P, Rengelink R, Ouborg NJ, Roelofs JGM (2003) Effects of population size and genetic variation on the response of Succisa pratensis to eutrophication and acidification. J. Ecol. 91: 600–609

    Article  Google Scholar 

  • Wahlund S (1928) Zusammensetzung von Populationen und Korrelationsers-chinungen von Standpunkt der Vererbungslehre aus betrachtet. Hereditas 11: 65–108

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Chie Yamanaka for assistance with laboratory experiments, Yuji Isagi for advice on experimental conditions for the nuclear microsatellites and Kunihiko Ueda, Tatsuya Iwai and Tokio Hoguro for information on the distribution of M. stellata. Computations using Mathematica software were carried out at the Computer Center of Agriculture, Forestry and Fisheries Research, MAFF, Japan. This study was supported by a grant provided by the Ministry of the Environment, Japan, for a research project on "Fundamental Research on in situ Conservation of Endangered Tree Species." We thank several Municipal and Prefectural Education Offices for permitting us to conduct the field survey and anonymous reviewers for improving an earlier draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saneyoshi Ueno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueno, S., Setsuko, S., Kawahara, T. et al. Genetic diversity and differentiation of the endangered Japanese endemic tree Magnolia stellata using nuclear and chloroplast microsatellite markers. Conserv Genet 6, 563–574 (2005). https://doi.org/10.1007/s10592-005-9011-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-005-9011-y

Keywords

Navigation