Skip to main content

Advertisement

Log in

Population genetic structure and distribution of introduced American mink (Mustela vison) in Spain, based on microsatellite variation

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The population genetic structure of an invasive species in Spain, the American mink (Mustela vison), was investigated using microsatellite DNA markers. This semi-aquatic carnivore, originating from North America, was imported into Europe for fur farming since the beginning of the 20th century. Due to massive escapes, farm damages, deliberate releases and/or accidents, feral mink populations were established in the aquatic ecosystems of many European countries, including Spain. We genotyped 155 American mink originating from the Spanish regions Basque Country, Catalonia, Castilla-Leon, Aragon, Valencia and Galicia using 10 polymorphic microsatellite loci to highlight population genetic structure, distribution and dispersal. M. vison populations in Spain appear differentiated and not yet connected by gene flow. Bayesian clustering analyses and spatial analyses of molecular variance detected four inferred clusters, overall coinciding with the sampled geographical localities. Preliminary testing shows moderate to large estimated effective population sizes. Molecular analyses result useful to provide baseline data for further research on the evolution of invasive mink populations, as well as support local management strategies and indirectly benefit the conservation of threatened species in Spain, such as the endangered European mink (Mustela lutreola), and the polecat (Mustela putorius), which share the habitat with the American mink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdelkrim J, Pascal M, Calmet C, Samadi S (2005) Importance of assessing population genetic structure before eradication of invasive species: examples from insular Norway rat populations. Conserv Biol 19:1509–1518

    Article  Google Scholar 

  • Anistoroaei R, Farid A, Benkel B, Cirera S, Christensen K (2006) Isolation and characterization of 79 microsatellite markers from the American mink (Mustela vison). Anim Genet 37:185–188

    Article  PubMed  CAS  Google Scholar 

  • Barbaresi S, Fani R, Gherardi F, Mengoni A, Souty-Grosset C (2003) Genetic variability in European populations of an invasive American crayfish: preliminary results. Biol Invas 5:269–274

    Article  Google Scholar 

  • Belliveau AM, Farid A, O’Connell M, Wright JM (1999) Assessment of genetic variability in captive and wild American mink (Mustela vison) using microsatellite markers. Can J Anim Sci 79:7–16

    Article  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2001) GENETIX 4.02, logiciel sous Windows TM pour la genetique des populations. Lab Genome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Fr

  • Benzecri JP (1973) L’analyse des donnees: T.2, L’analyse des correspondences. Dunoud, Paris, Fr

    Google Scholar 

  • Bonesi L, MacDonald DW (2004a) Impact of released Eurasian otters on a population of American mink: a test using an experimental approach. Oikos 106:9–18

    Article  Google Scholar 

  • Bonesi L, MacDonald DW (2004b) Differential habitat use promotes sustainable coexistence between the specialist otter and the generalist mink. Oikos 106:509–519

    Article  Google Scholar 

  • Bonesi L, Chanin P, MacDonald DW (2004) Competition between Eurasian otter Lutra lutra and American mink Mustela vison probed by niche shift. Oikos 106:19–26

    Article  Google Scholar 

  • Bravo C, Bueno F (1992) Nuevos datos sobre la distribución del vison americano (Mustela vison Schreber) en España Central. Ecología 6:161–164

    Google Scholar 

  • Bryan MB, Zalinski D, Filcek KB, Libants S, Li W, Scribner T (2005) Patterns of invasion and colonization of the sea lamprey (Petromyzon marinus) in North America as revealed by microsatellite genotypes. Mol Ecol 14:3757–3773

    Article  PubMed  CAS  Google Scholar 

  • Brusgaard K, Malchenko SN, Christensen K, Lohi O, Kruse T (1998a) A polymorphic mink (Mustela vison) dinucleotide repeat. Anim Genet 29:467

    PubMed  CAS  Google Scholar 

  • Brusgaard K, Holm LE, Lohi O (1998b) Two polymorphic mink (Mustela vison) dinucleotide repeat loci. Anim Genet 29:468

    PubMed  CAS  Google Scholar 

  • Brusgaard K, Shukri N, Malchenko SN, Lohi O, Christensen K, Kruse T (1998c) Three polymorphic mink (Mustela vison) dinucleotide repeats. Anim Genet 29:153

    PubMed  CAS  Google Scholar 

  • Clode D, MacDonald DW (2002) Invasive predators and the conservation of island birds: the case of the American mink Mustela vison and terns Sterna spp in the western Isles, Scotland. Bird Study 49:118–123

    Article  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  • Coulon A, Guillot G, Cosson JF (2006) Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. Mol Ecol 15:1669–1679

    Article  PubMed  CAS  Google Scholar 

  • Craik C (1997) Long-term effects of North American mink Mustela vison on seabirds in western Scotland. Bird Study 44:303–309

    Google Scholar 

  • Davis CS, Strobeck C (1998) Isolation, variability and cross-species amplification of polymorphic microsatellite loci in the family Mustelidae. Mol Ecol 7:1771–1788

    Article  Google Scholar 

  • Davison A, Griffiths HI, Brookes RC, Maran T, MacDonald DW, Sidorovich VE, Kitchener AC, Irizar I, Gonzalez-Esteban J, Ceña JC, Ceña A, Moya I, Palazon S (2000) Mitochondrial DNA and palaeontological evidence for the origins of the endangered European mink, Mustela lutreola. Anim Conserv 4:345–355

    Article  Google Scholar 

  • Delibes M, Clavero M, Prenda J, del Carmen Blázquez M, Ferreras P (2004) Potential impact of an exotic mammal on rocky intertidal communities of northwestern Spain. Biol Invas 6(2):213–219

    Article  Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC et al (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Nat Acad Sci USA 91:3166–3170

    Article  PubMed  CAS  Google Scholar 

  • Dunstone N (1993) The mink. T & AD Poyser Ltd., London

    Google Scholar 

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11(12):2571–2581

    Article  PubMed  CAS  Google Scholar 

  • Estoup A, Wilson IJ, Sullivan C, Cornuet JM, Moritz C (2001) Inferring population history from microsatellite and enzyme data in serially introduced cane toads, Bufo marinus. Genetics 159:1671–1687

    PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Ferreras P, MacDonald DW (1999) The impact of American mink Mustela vison on water birds in the upper Thames. J Appl Ecol 36:701–708

    Article  Google Scholar 

  • Fleming MA, Ostrander EA, Cook JA (1999) Microsatellite markers for American mink (Mustela vison) and ermine (Mustela erminea). Mol Ecol 8:1351–1362

    Article  Google Scholar 

  • Fournier_Chambrillon C, Aasted B, Perrot A, Pontier D, Sauvage F, Artois M, Cassiede JM, Chauby X, DalMolin A, Simon C, Fournier P (2004) Antibodies to Aleutian mink disease Parvovirus in free-ranging European mink (Mustela lutreola) and other small carnivores from southwestern France. J Wildlife Dis 40(3):394–402

    Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press

  • Garnier S, Alibert P, Audiot P, Prieur B, Rasplus JY (2004) Isolation by distance and sharp discontinuities in gene frequencies: implications for the phylogeography of an alpine insect species, Carabus solieri. Mol Ecol 13:1883–1897

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Moliner BJ, Cabria MT, Rubines J, Garin I, Madeira MJ, Elejalde A, Aihartza J, Fournier P, Palazón S (2004) PCR-RFLP identification of mustelid species: European mink (Mustela lutreola), American mink (M. vison) and polecat (M. putorius) by analysis of excremental DNA. J Zool Lond 262:311–316

    Article  Google Scholar 

  • Goudet J (1995) A program for estimating and testing gene diversities and differentiation statistics from codominant genetic markers. J Heredity 86(6):485–486

    Google Scholar 

  • Goudet J, Perrin N, Waser P (2002) Tests for sex-biased dispersal using bi-parentally inherited genetic markers. Mol Ecol 11:1103–1114

    Article  PubMed  CAS  Google Scholar 

  • Grapputo A, Boman S, Lindstrom L, Lyytinen A, Mappes J (2005) The voyage of an invasive species across continents: genetic diversity of North American and European Colorado potato beetle populations. Mol Ecol 14:4207

    Article  PubMed  CAS  Google Scholar 

  • Guillot G, Mortier F, Estoup A (2005) Geneland: a computer package for landscape genetics. Mol Ecol Notes 5:708–711

    Article  CAS  Google Scholar 

  • Hampton JO, Spencer PBS, Alpers DL, Twigg LE, Woolnough AP, Doust J, Higgs T, Pluske J (2004) Molecular techniques, wildlife management and the importance of genetic population structure and dispersal: a case study with feral pigs. J Appl Ecol 41(4):735–743

    Article  CAS  Google Scholar 

  • Hansen MM, Jacobsen L (1999) Identification of mustelid species: otter (Lutra lutra), American mink (Mustela vison) and polecat (Mustela putorius), by analysis of DNA from faecal samples. J Zool Lond 247:177–181

    Article  Google Scholar 

  • Hill WG (1981) Estimation of effective population size from data on linkage disequilibrium. Genet Res 38:209–216

    Article  Google Scholar 

  • Holland BS (2000) Genetics of marine bioinvasions. Hydrobiologia 420(1):63–71

    Article  CAS  Google Scholar 

  • Invasiber, Especies exóticas invasoras de la peninsula Iberica: http://www.hidra.udg.es/invasiber/presentacion.php

  • Jonson RN, Starks PT (2004) A surprising level of genetic diversity in an invasive wasp: Polistes dominulus in the Northeastern United States. Annal Entomol Soc Am 97(4):732–737

    Article  Google Scholar 

  • Kimura M, Ohta T (1978) Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc Nat Acad Sci USA 75:2868–2872

    Article  PubMed  CAS  Google Scholar 

  • Lindholm AK, Breden F, Alexander HJ, Chan W, Thakurta SG, Brooks R (2005) Invasion success and genetic diversity of introduced populations of guppies Poecilia reticulata in Australia. Mol Ecol 14(12):3671–3682

    Article  PubMed  CAS  Google Scholar 

  • Luikart GL, JM Cornuet (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237

    Article  Google Scholar 

  • Luikart G, Sherwin WB, Steele BM, Allendorf FW (1998) Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic changes. Mol Ecol 7:963–974

    Article  PubMed  CAS  Google Scholar 

  • MacDonald D, Strachan R (1999) The mink and the water vole: analyses for conservation. Wildcru and the Environment agency

  • Mañas S, Ceña JC, Ruiz-Olmo J, Palazón S, Domingo M, Wolfinbarger JB, ME Bloom (2001) Aleutian mink disease parvovirus in wild riparian carnivores in Spain. J Wildlife Dis 37:138–144

    Google Scholar 

  • Maran T, Hentotten H (1995) Why is the European mink (Mustela lutreola) disappearing? A review of the process and hypotheses. Ann Zool Fennici 32:47–54

    Google Scholar 

  • Michaux JR, Libois R, Davison A, Chevret P, Rosoux R (2004) Is the western population of the European mink (Mustela lutreola) a distinct management unit for conservation? Biol Conserv 115:357–367

    Article  Google Scholar 

  • Michaux JR, Hardy OJ, Justy F, Fournier P, Kranz A, Cabria M, Davison A, Rosoux R, Libois R (2005) Conservation genetics and population history of the threatened European mink Mustela lutreola with an emphasis on the west European population. Mol Ecol 14:2373–2388

    Article  PubMed  CAS  Google Scholar 

  • Miller N, Estoup A, Toepfer S, Bourguet D, Lapchin L, Derridj S, Reynaud P, Furlan F, Guillemaud T (2005) Multiple transatlantic introductions of the Western Corn Rootworm. Science 310:992

    Article  PubMed  CAS  Google Scholar 

  • Muñoz AR, Barbosa AM, Farfán MA, Real R (2005) Determinación de las áreas de expansión potencial del visón americano (Mustela vison) en España peninsular. VII Jornadas SECEM, Valencia

    Google Scholar 

  • Nordstrom M, Hogmander J, Laine J, Nummelin J, Laanetu N, Korpimaki E (2003) Effects of feral mink removal on seabirds, waders and passerines on small island in the Baltic Sea. Biol Conserv 109(3):359–368

    Article  Google Scholar 

  • O’Connell M, Wright JM, Farid A (1996) Development of PCR primers for nine polymorphic American mink Mustela vison microsatellite loci. Mol Ecol 5:311–312

    Article  PubMed  CAS  Google Scholar 

  • Palazon S, Ruiz-Olmo J (eds) (1997) El vison europeo (Mustela lutreola) y el vison americano (Mustela vison) en España. Ministerio de Medio Ambiente

  • Palazon S, Ceña JC, Mañas S, Ceña A, Ruiz-Olmo J (2002) Current distribution and status of the European mink (Mustela lutreola L 1761) in Spain. IUCN Species Survival Commission 26:9–11

    Google Scholar 

  • Park K (2004) Assessment and management of invasive alien predators. Ecol Soc 9(2):12

    Google Scholar 

  • Peel D, Ovenden JR, Peel SL (2004) NeEstimator: software for estimating effective population size, Version 1.3. Queensland Government, Department Primary Industries and Fisheries

  • Peeples JW, Fendley TT, Baker OE, Butfiloski JW (2002) Dispersal, home range and survival of repatriated mink in the northern coastal marshes of South Carolina. Proceedings of the 56th Annual Conference Southeastern Association Fish Wildlife Agencies, 219–228

  • Peltier D, Lodé T (2003) Molecular survey of genetic diversity in the endangered European mink Mustela lutreola. C.R. Biologies 325:49–53

    Article  CAS  Google Scholar 

  • Pinceel J, Jordanes K, Houtte N, Bernon G, Backeljau T (2005) Population genetics and identity of introduced terrestrial slug: Arion subfuscus s. l. in the North-east USA (Gastropoda, Pulmonata, Arionidae). Genetica 125:155–171

    Article  PubMed  Google Scholar 

  • Previtali A, Cassini M, MacDonald D (1998) Habitat use and diet of the American mink, Mustela vison, in Argentinian Patagonia. J Zool 246:482–486

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Pudovkin AI, Zaykin DV, Hedgecock D (1996) On the potential for estimating the effective number of breeders from heterozygote excess in progeny. Genetics 144:383–387

    PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283

    Article  Google Scholar 

  • Rousset F (1996) Equilibrium values of measure of population subdivision for stepwise mutation processes. Genetics 142:1357–1362

    PubMed  CAS  Google Scholar 

  • Ruiz-Olmo J, Palazon S, Bueno F, Bravo C, Munilla I, Romero R (1997) Distribution, status and colonization of the American mink Mustela vison in Spain. J Wildlife Res 2:30–36

    Google Scholar 

  • Rushton SP, Barreto GW, Cormack RM, MacDonald DW, Fuller R (2000) Modelling the effects of mink and habitat fragmentation on the water vole. J Appl Ecol 37(3):475–490

    Article  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu RevEcol Syst 32:305–332

    Article  Google Scholar 

  • Schlaepfer MA, Sherman PW, Blossey B, Runge MC (2005) Introduced species as evolutionary traps. Ecol Lett 8:241–246

    Article  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Software for population genetics data analysis, including genetic differentiation and analyses of molecular variance (AMOVA). University of Geneva, Switzerland

    Google Scholar 

  • Sidorovich V, Kruuk H, MacDonald DW (1999) Body size and interactions between European and American mink (Mustela lutreola and M. vison) in Eastern Europe. J Zool Lond 248:521–527

    Article  Google Scholar 

  • Sidorovich V, MacDonald DW (2001) Density dynamics and changes in habitat use by the European mink and other native mustelids in connection with the American mink expansion in Belarus. Netherland J Zool 51:107–126

    Article  Google Scholar 

  • Stepien CA, Brown JE, Neilson ME, Tumeo MA (2005) Genetic diversity of invasive species in the Great Lakes versus their Eurasian source populations: insights for Risk analysis. Risk Anal 25(4):1043–1060

    Article  PubMed  Google Scholar 

  • Tyler C, Clark E, Pullin AS (2005) Do management interventions effectively reduce or eradicate populations of the American mink Mustela vison? Systematic Review N 7. Centre for evidence-based Conservation, Birmingham, UK

    Google Scholar 

  • Travis JMJ, Park KJ (2004) Spatial structure and the control of invasive alien species. Anim Conserv 7:321–330

    Article  Google Scholar 

  • Vincent IR, Farid A, Otieno CJ (2003) Variability of thirteen microsatellite markers in American mink (Mustela vison). Can J Anim Sci 83:597–599

    CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163(3):1177–1191

    PubMed  Google Scholar 

  • Wisely SM, Buskirk SW, Fleming MA, McDonald DB, Ostrander EA (2002) Genetic diversity and fitness in black-footed ferrets before and during a bottleneck. J Heredity 93(4):231–237

    Article  CAS  Google Scholar 

  • Zeisset I, Beebee TJC (2003) Population genetics of a successful invader the marsh frog Rana ridibunda in Britain. Mol Ecol 12:639–646

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is dedicated to Xavier Domingo-Roura, who passed away in November 2005; without his commitment and enthusiasm this study would have not been possible. We thank Ettore Randi for helpful suggestions on the molecular analyses. Most samples were obtained within European mink conservation projects LIFE 00NAT/E/7299; LIFE 00NAT/E/7331; LIFE 00NAT/E/7335 and LIFE 02/NAT/E/8604 developed by the Governments of LaRioja, Junta de Castilla-Leon, Diputación Foral de Álava, Generalitat de Catalunya and Ministerio de Medio Ambiente. R. Lecis was supported by Ministerio de Educación y Ciencia, Madrid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Lecis.

Additional information

This paper is dedicated to the memory of Xavier Domingo-Roura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lecis, R., Ferrando, A., Ruiz-Olmo, J. et al. Population genetic structure and distribution of introduced American mink (Mustela vison) in Spain, based on microsatellite variation. Conserv Genet 9, 1149–1161 (2008). https://doi.org/10.1007/s10592-007-9428-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-007-9428-6

Keywords

Navigation