Skip to main content

Advertisement

Log in

Barcoding bushmeat: molecular identification of Central African and South American harvested vertebrates

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The creation and use of a globally available database of DNA sequences from a standardized gene region has been proposed as a tool for species identification, assessing genetic diversity and monitoring the legal and illegal trade in wildlife species. Here, we contribute to the Barcode of Life Data System and test whether a short region of the mitochondrial cytochrome c oxidase subunit 1 (COX1) gene would reliably distinguish among a suite of commonly hunted African and South American mammal and reptile species. We used universal primers to generate reference barcode sequences of 645 bp for 23 species from five vertebrate families (Crocodilidae, Alligatoridae, Bovidae, Suidae and Cercopithecidae). Primer cocktails yielded high quality barcode sequences for 179 out of 204 samples (87.7%) from all species included in the study. For most taxa, we sequenced multiple individuals to estimate intraspecific sequence variability and document fixed diagnostic characters for species identification. Polymorphism in the COX1 fragment was generally low (mean = 0.24%), while differences between congeneric species averaged 9.77%. Both fixed character differences and tree-based maximum likelihood distance methods unambiguously identified unknown and misidentified samples with a high degree of certainty. Barcode sequences also differentiated among newly identified lineages of African crocodiles and identified unusually high levels of genetic diversity in one species of African duiker. DNA barcoding offers promise as an effective tool for monitoring poaching and commercial trade in endangered species, especially when investigating semi-processed or morphologically indistinguishable wildlife products. We discuss additional benefits of barcoding to ecology and conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albrechtsen L, David WMA, Paul JJ et al (2007) Faunal loss from bushmeat hunting: empirical evidence and policy implications in Bioko island. Environ Sci Policy 10:654–667

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Baker CS (2008) A truer measure of the market: the molecular ecology of fisheries and wildlife trade. Mol Ecol 17:3985–3998

    Article  PubMed  Google Scholar 

  • Baker CS, Cipriano F, Palumbi SR (1996) Molecular genetic identification of whale and dolphin products from commercial markets in Korea and Japan. Mol Ecol 5:671–685

    Article  CAS  Google Scholar 

  • Baker CS, Dalebout ML, Lento GM et al (2002) Gray whale products sold in commercial markets along the pacific coast of Japan. Mar Mamm Sci 18:295–300

    Article  Google Scholar 

  • Bennett EL, Blencowe E, Brandon K et al (2007) Hunting for consensus: reconciling bushmeat harvest, conservation, and development policy in west and central Africa. Conserv Biol 21:884–887

    Article  PubMed  Google Scholar 

  • Bickford D, Lohman DJ, Sodhi NS et al (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155

    Article  PubMed  Google Scholar 

  • Birstein VJ, Doukakis P, Sorkin B et al (1998) Population aggregation analysis of three caviar-producing species of sturgeons and implications for the species identification of black caviar. Conserv Biol 12:766–775

    Article  Google Scholar 

  • Brochu CA (2007) Morphology, relationships, and biogeographical significance of an extinct horned crocodile (Crocodylia, Crocodylidae) from the Quaternary of Madagascar. Zool J Linn Soc 150:835–863

    Article  Google Scholar 

  • Brower AVZ (1999) Delimitation of phylogenetic species with DNA sequences: a critique of Davis and Nixon’s population aggregation analysis. Syst Biol 48:199–213

    Article  CAS  PubMed  Google Scholar 

  • Busack SD, Pandya S (2001) Geographic variation in Caiman crocodilus and Caiman yacare (Crocodylia: Alligatoridae): systematic and legal implications. Herpetologica 57:294–312

    Google Scholar 

  • Chomel BB, Belotto A, Meslin FX (2007) Wildlife, exotic pets, and emerging zoonoses. Emerg Infect Dis 13:6–11

    Article  PubMed  Google Scholar 

  • Chung W, Steiper M (2008) Mitochondrial CO1I introgression into the nuclear genome of Gorilla gorilla. Int J Primatol 29:1341–1353

    Article  PubMed  Google Scholar 

  • Davis JI, Nixon KC (1992) Populations, genetic variation, and the delimitation of phylogenetic species. Syst Biol 41:421–435

    Google Scholar 

  • Deagle BE, Eveson JP, Jarman SN (2006) Quantification of damage in DNA recovered from highly degraded samples–a case study on DNA in faeces. Front Zool 3:11

    Article  PubMed  Google Scholar 

  • DeSalle R (2006) Species discovery versus species identification in DNA barcoding efforts: response to Rubinoff. Conserv Biol 20:1545–1547

    Article  PubMed  Google Scholar 

  • Eaton MJ (2002) Subsistence wildlife hunting in a multi-use forest of the Republic of Congo: monitoring and management for sustainable harvest (Unpublished MS thesis), University of Minnesota, St. Paul, p 90

  • Eaton MJ (2006) Ecology, conservation and management of the Central African dwarf crocodile (Osteolaemus tetraspis), a progress report pp 84–95. Crocodiles: Proceedings of the 18th working meeting of the IUCN-SSC Crocodile Specialist Group, IUCN, Gland, Switzerland

  • Eaton MJ, Barr B (2005) Regional Africa report: Lac Tele, Rep. of Congo. Crocodile Specialist Group Bull 24:18–20

    Google Scholar 

  • Eaton MJ, Martin AP, Thorbjarnarson J et al (2009) Species-level diversification of African dwarf crocodiles (Genus Osteolaemus): a geographic and phylogenetic perspective. Mol Phylogenet Evol 50:496–506

    Article  CAS  PubMed  Google Scholar 

  • Estes RD (1991) The behavior guide to African mammals: including hoofed mammals, carnivores, primates. The University of California Press, Berkeley

    Google Scholar 

  • Fitzhugh K (2006) DNA barcoding: an instance of technology-driven science? Bioscience 56:462–463

    Article  Google Scholar 

  • Folmer O, Black M, Hoeh W et al (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  • Funk DJ, Omland KE (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol Syst 34:397–423

    Article  Google Scholar 

  • Hajibabaei M, Smith MA, Janzen DH et al (2006) A minimalist barcode can identify a specimen whose DNA is degraded. Mol Ecol Notes 6:959–964

    Article  CAS  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL et al (2003a) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270:313–321

    Article  CAS  Google Scholar 

  • Hebert PDN, Ratnasingham S, deWaard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B Biol Sci 270:S96–S99

    Article  CAS  Google Scholar 

  • Hebert PDN, Penton EH, Burns JM et al (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817

    Article  CAS  PubMed  Google Scholar 

  • Hekkala E (2004) Conservation genetics at the species boundary: case studies from African and Caribbean crocodiles (genus Crocodylus) (Unpublished Ph.D. thesis), Columbia University, New York, p 142

  • Ivanova NV, Zemlak TS, Hanner RH et al (2007) Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes 7:544–548

    Article  CAS  Google Scholar 

  • Janzen DH, Hajibabaei M, Burns JM et al (2005) Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding. Phil Trans R Soc Lond B 360:1835–1845

    Article  CAS  Google Scholar 

  • Johns GC, Avise JC (1998) A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Mol Biol Evol 15:1481–1490

    CAS  PubMed  Google Scholar 

  • Kaila L, Stahls G (2006) DNA barcodes: Evaluating the potential of COX1 to diffentiate closely related species of Elachista (Lepidoptera: Gelechioidea: Elachistidae) from Australia. Zootaxa 1170:1–26

    Google Scholar 

  • Kerr KCR, Stoeckle MY, Dove CJ et al (2007) Comprehensive DNA barcode coverage of North American birds. Mol Ecol Notes 7:535–543

    Article  CAS  PubMed  Google Scholar 

  • Kingdon J (1997) The Kingdon field guide to African mammals. Academic Press, London

    Google Scholar 

  • Kolokotronis SO, MacPhee RDE, Greenwood AD (2007) Detection of mitochondrial insertions in the nucleus (NuMts) of Pleistocene and modern muskoxen. BMC Evol Biol 7:67

    Article  PubMed  Google Scholar 

  • Lanave C, Preparata G, Saccone C et al (1984) A new method for calculating evolutionary substitution rates. J Mol Evol 20:86–93

    Article  CAS  PubMed  Google Scholar 

  • Lemos B, Canavez F, Moreira M (1999) Mitochondrial DNA-like sequences in the nuclear genome of the opossum genus Didelphis (Marsupialia : Didelphidae). J Hered 90:543–547

    Article  CAS  PubMed  Google Scholar 

  • Marko PB, Lee SC, Rice AM et al (2004) Mislabeling of a depleted reef fish. Nature 430:309–310

    Article  CAS  PubMed  Google Scholar 

  • Martin AP (1991) Application of mitochondrial DNA sequence analysis to the problem of species identification of sharks. NOAA NMFS 115:53–59

    Google Scholar 

  • McAliley LR, Willis RE, Ray DA et al (2006) Are crocodiles really monophyletic? Evidence for subdivisions from sequence and morphological data. Mol Phylogenet Evol 39:16–32

    Article  CAS  PubMed  Google Scholar 

  • Milius S (2005) Bushmeat on the Menu: untangling the influences of hunger, wealth, and international commerce. Science News 167:138

    Article  Google Scholar 

  • Milner-Gulland EJ, Bennett EL, The SCB 2002 Annual Meeting Wild Meat Group (2003) Wild meat: the bigger picture. Trends Ecol Evol 18:351–357

    Article  Google Scholar 

  • Moura T, Silva MC, Figueiredo I et al (2008) Molecular barcoding of north-east Atlantic deep-water sharks: species identification and application to fisheries management and conservation. Mar Freshwater Res 59:214–223

    Article  CAS  Google Scholar 

  • Neigel J, Domingo A, Stake J (2007) DNA barcoding as a tool for coral reef conservation. Coral Reefs 26:487–499

    Article  Google Scholar 

  • Nowak RM (1999) Walker’s mammals of the world. John Hopkins University Press, Baltimore

    Google Scholar 

  • Rach J, DeSalle R, Sarkar IN et al (2008) Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata. Proc R Soc Lond B Biol Sci 275:237–247

    Article  CAS  Google Scholar 

  • Ratnasingham S, Hebert PDN (2007) BOLD: The barcode of life data system. Mol Ecol Notes 7:355–364

    Article  CAS  PubMed  Google Scholar 

  • Redford KH (1992) The empty forest. Bioscience 42:412–422

    Article  Google Scholar 

  • Rodriguez F, Oliver JL, Marin A et al (1990) The general stochastic model of nucleotide substitution. J Theor Biol 142:485–501

    Article  CAS  PubMed  Google Scholar 

  • Ross HA, Lento GM, Dalebout ML et al (2003) DNA surveillance: web-based molecular identification of whales, dolphins, and porpoises. J Hered 94:111–114

    Article  CAS  PubMed  Google Scholar 

  • Rubinoff D (2006) Utility of mitochondrial DNA barcodes in species conservation. Conserv Biol 20:1026–1033

    Article  PubMed  Google Scholar 

  • Rubinoff D, Cameron S, Will K (2006) A genomic perspective on the shortcomings of mitochondrial DNA for “barcoding” identification. J Hered 97:581–594

    Article  CAS  PubMed  Google Scholar 

  • Schmitz A, Mansfeld P, Hekkala E et al (2003) Molecular evidence for species level divergence in African Nile Crocodiles Crocodylus niloticus (Laurenti, 1786). CR Palevol 2:703–712

    Article  Google Scholar 

  • Shapiro B, Drummond A, Rambaut A et al (2004) Rise and fall of the Beringian steppe bison. Science 306:1561–1565

    Article  CAS  PubMed  Google Scholar 

  • Song H, Buhay JE, Whiting MF et al (2008) Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc Natl Acad Sci USA 105:13486–13491

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M et al (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Thompson J, Higgins D, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  • Thorbjarnarson JB, Eaton MJ (2004) Preliminary examination of crocodile bushmeat issues in the Republic of Congo and Gabon, pp 236–247. Crocodiles: Proceedings of the 17th working meeting of the IUCN-SSC Crocodile Specialist Group, IUCN, Gland, Switzerland

  • van Vliet N, Zundel S, Miquel C et al (2008) Distinguishing dung from blue, red and yellow-backed duikers through noninvasive genetic techniques. Afr J Ecol 46:411–417

    Article  Google Scholar 

  • Vasconcelos WR, Hrbek T, Da Silveira R et al (2006) Population genetic analysis of Caiman crocodilus (Linnaeus, 1758) from South America. Genet Mol Biol 29:220–230

    Article  CAS  Google Scholar 

  • Vuissoz A, Worobey M, Odegaard N et al (2007) The survival of PCR-amplifiable DNA in cow leather. J Archeol Sci 34:823–829

    Article  Google Scholar 

  • Witt JDS, Threloff DL, Hebert PDN (2006) DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Mol Ecol 15:3073–3082

    Article  CAS  PubMed  Google Scholar 

  • Yan P, Wu X-B, Shi Y et al (2005) Identification of Chinese alligators (Alligator sinensis) meat by diagnostic PCR of the mitochondrial cytochrome b gene. Biol Conserv 121:45–51

    Article  Google Scholar 

  • Yang ZH (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 39:306–314

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Alfred P. Sloan Foundation and the Richard Lounsbery Foundation. The National Science Foundation and the American Museum of Natural History’s Research Experience for Undergraduates Program supported the laboratory work of GLM. The AMNH sponsored Aritra Datta and Arlene Amador to extract and sequence the USFWS crocodile skin products and we thank them for their efforts. Field support was provided to MJE by the Wildlife Conservation Society’s Congo and Gabon programs, the National Geographic Society, the Rufford Foundation, Lincoln Park Zoo’s Asia & Africa Fund and the Mac-Arthur Program of the University of Minnesota. MJE thanks Paul and Sarah Elkan (WCS-Congo), Debora Pires, and Congo field assistants Yamba Flavien, Bienvenu Kimbembe and Rufin Lekana. New World crocodilian samples were collected by Peter Brazaitis, Carlos Yamashita (IBAMA, Brazil) and George Rebelo (INPA, Brazil) and provided by G. J. Watkins-Colwell of the Peabody Museum. Ellen Bean and three anonymous reviewers greatly improved the clarity and scope of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell J. Eaton.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eaton, M.J., Meyers, G.L., Kolokotronis, SO. et al. Barcoding bushmeat: molecular identification of Central African and South American harvested vertebrates. Conserv Genet 11, 1389–1404 (2010). https://doi.org/10.1007/s10592-009-9967-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-009-9967-0

Keywords

Navigation