Skip to main content

Advertisement

Log in

Interaction of climate, demography and genetics: a ten-year study of Brassica insularis, a narrow endemic Mediterranean species

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Long-term demographic surveys, needed to obtain accurate information on population dynamics and efficiently manage rare species, are still very scarce. Matrix population models are useful tools to identify key demographic transitions and thus help setting up conservation actions. Furthermore, the combination of ecological, demographic and genetic data is likely to improve the identification of the threats acting upon populations and help conservation decisions. In this paper we illustrate the power of this approach on Brassica insularis, a Mediterranean endemic plant species, rare and endangered in Corsica (France). In four populations of this species, a long-term demographic survey (2000–2009), genetic analyses (in 2000 and 2009) and survey of ecological variables (climatic variables, competition and herbivory) were performed. By using both deterministic and stochastic matrix model analyses, we assessed the viability of each population and tested for both spatial and temporal variations in demographic vital rates. Populations exhibited differing demographic behaviours and environmental stochasticity occurred in populations. Significant correlations between climatic variables and vital rates were detected. Stochastic simulations suggested that three out of the four populations studied might present a high risk of extinction on the short-term and should actively be managed, or at least surveyed. It could be, however, that two of these populations are experiencing density-dependent regulation, rather than being declining. Microsatellite diversity was slightly reduced in a single population and similar in the three others, consistently with expectations based on population census size and geographic area, as well as with diversity at the S-locus observed in 2000. The combination of all data led to specific recommendations for managing each population. We discuss the implications for conservation of such a general approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akçakaya HR, Root W (2002) RAMAS Metapop: viability analysis for stage-structured metapopulations (version 4.0). Applied Biomathematics, Setauket, New York

    Google Scholar 

  • Asquith NM (2001) Misdirections in conservation biology. Conserv Biol 15:345–352

    Article  Google Scholar 

  • Belkhir K (2004) GENETIX, logiciel sous WindowsTM pour la génétique des populations. Laboratoire Génome, Populations, Interactions CNRS UMR 5000, Université de Montpellier II, Montpellier, France

  • Brito DC, Grelle EV, Boubli JP (2008) Is the Atlantic Forest protected area network efficient in maintaining viable populations of Brachyteles hypoxanthus? Biodivers Conserv 17:3255–3268

    Article  Google Scholar 

  • Brook BW, Tonkyn DW, O’Grady JJ, Frankham R (2002) Contribution of inbreeding to extinction risk in threatened species. Conserv Ecol 6:16

    Google Scholar 

  • Burgman MA, Lamont BB (1992) A stochastic model for the viability of Banksia cuneata populations: environmental, demographic and genetic effects. J Appl Ecol 29:719–727

    Article  Google Scholar 

  • Burnham KP, Anderson DR (1998) Model selection and inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Caswell H (1996) Analysis of life table response experiments II. Alternative parameterizations for size- and stage structured models. Ecol Model 88:73–82

    Article  Google Scholar 

  • Caswell H (2001) Matrix population models: construction, analysis and interpretation, 2nd edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Caughley G (1994) Directions in conservation biology. J Anim Ecol 63:215–244

    Article  Google Scholar 

  • Colas B, Kirchner F, Riba M, Olivieri I, Mignot A, Imbert E, Beltrame C, Carbonell D, Fréville H (2008) Restoration demography: a 10-year demographic comparison between introduced and natural populations of endemic Centaurea corymbosa (Asteraceae). J Appl Ecol 45:1468–1476

    Article  Google Scholar 

  • Colling G, Matthies D (2006) Effects of habitat deterioration on population dynamics and extinction risk of an endangered long-lived perennial herb (Scorzonera humilis). J Ecol 94:959–972

    Article  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  Google Scholar 

  • Dolan RW, Quintana-Ascencio PF, Menges ES (2008) Genetic change following fire in populations of a seed-banking perennial plant. Oecologia 158:355–360

    Article  PubMed  Google Scholar 

  • Dufresne J-L, Salas y Melia D, Denvil S, Tyteca S, Arzel O, Bony S, Braconnot P, Brockmann P, Cadule P, Caubel A, Chauvin F, Déqué M, Douville H, Fairhead L, Fichefet T, Foujols M-A, Friedlingstein P, Grandpeix J-Y, Guérémy J-F, Hourdin F, Idelkadi A, Krinner G, Lévy C, Madec G, Marquet P, Marti O, Musat L, Planton S, Royer J-F, Swingedouw D, Voldoire A (2006) Simulation du climat récent et futur par les modèles du CNRM et de l’IPSL. La Météorol 55:45–59

    Article  Google Scholar 

  • Ehrlén J, Syrjänen K, Leimu R, Begoña-Garcia M, Lehtilä K (2005) Land use and population growth of Primula veris: an experimental demographic approach. J Appl Ecol 42:317–326

    Article  Google Scholar 

  • Endels P, Jacquemyn H, Brys R, Hermy M (2007a) Genetic erosion explains deviation from demographic response to disturbance and year variation in relic populations of the perennial Primula vulgaris. J Ecol 95:960–972

    Article  Google Scholar 

  • Endels P, Jacquemyn H, Brys R, Hermy M (2007b) Reinstatement of traditional mowing regimes counteracts population senescence in the rare perennial Primula vulgaris. Appl Veg Sci 10:351–360

    Article  Google Scholar 

  • Enneson JJ, Litzgus JD (2008) Using long-term data and a stage-classified matrix to assess conservation strategies for an endangered turtle (Clemmys guttata). Biol Conserv 141:1560–1568

    Article  Google Scholar 

  • Fieberg J, Ellner SP (2001) Stochastic matrix models for conservation and management: a comparative review of methods. Ecol Lett 4:244–266

    Article  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Article  Google Scholar 

  • Fréville H, Colas B, Riba M, Caswell H, Mignot A, Imbert E, Olivieri I (2004) Spatial and temporal demographic variability in the endemic plant species Centaurea corymbosa (Asteraceae). Ecology 85:694–703

    Article  Google Scholar 

  • García MB, Picó FW, Ehrlén J (2008) Life span correlates with population dynamics in perennial herbaceous plants. Am J Bot 95:258–262

    Article  Google Scholar 

  • Ghimire SR, Gimenez O, Pradel R, McKey D, Aumeeruduy-Thomas Y (2008) Demographic variation and population viability in a threatened Himalayan medicinal and aromatic herb (Nardostachys grandiflora): matrix modeling of harvesting effects in two contrasting habitats. J Appl Ecol 45:41–51

    Article  Google Scholar 

  • Ginzburg LL, Slobodkin B, Johnson K, Bindman AG (1982) Quasi-extinction probabilities as a measure of impact on population growth. Risk Anal 2:171–181

    Article  Google Scholar 

  • Glémin S (2002) Dépression de consanguinité, systèmes de reproduction et biologie de la conservation. Approches théoriques et expérimentales chez Brassica insularis Moris. PhD thesis, University of Montpellier 2, Montpellier

  • Glémin S, Gaude T, Guillemin ML, Lourmas M, Olivieri I, Mignot A (2005) Balancing selection in the wild: Testing population genetics theory of self-incompatibility in the rare species Brassica insularis. Genetics 171:279–289

    Article  PubMed  Google Scholar 

  • Glémin S, Vimond L, Ronfort J, Bataillon T, Mignot A (2006) Marker-based investigation of inbreeding depression in the endangered species Brassica insularis. Heredity 97:304–311

    Article  PubMed  Google Scholar 

  • Glémin S, Petit C, Maurice S, Mignot A (2008) Consequences of low mate availability in the rare self-incompatible species Brassica insularis. Conserv Biol 22:216–221

    Article  PubMed  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic press, London

    Google Scholar 

  • Hayward GD, McDonald DB (1997) Matrix population models as a tool in development of habitat models. In: Duncan JR, Johnson DH, Nicholls TH (eds) Biology and conservation of owls of the northern hemisphere, General Technical Report NC-190. US Forest Service, Winnipeg, Manitoba, Canada, pp 205–212

    Google Scholar 

  • Hiscock SJ, McInnis SM (2003) Pollen recognition and rejection during the sporophytic self-incompatibility response: Brassica and beyond. Trends Plant Sci 8:606–613

    Article  CAS  PubMed  Google Scholar 

  • Hoebee SE, Thrall PH, Young AG (2008) Integrating population demography, genetics and self-incompatibility in a viability assessment of the Wee Jasper Grevillea (Grevillea iaspicula McGill., Proteaceae). Conserv Genet 9:515–529

    Article  Google Scholar 

  • Horvitz CC, Schemske DW, Caswell H (1997) The ‘relative’ importance of life-history stages to population growth: prospective and retrospective analysis. In: Tuljapurkar S, Caswell H (eds) Structured population models in marine, terrestrial and freshwater systems. Chapman & Hall, New York, pp 247–272

    Google Scholar 

  • Jacquemyn H, Van Rossum F, Brys R, Endels P, Hermy M, Triest L, de Blust G (2003) Effects of agricultural land use and fragmentation on genetics, demography and population persistence of the rare Primula vulgaris, and implications for conservation. Belg J Bot 136:5–22

    Google Scholar 

  • Jacquemyn H, Brys R, Hermy M, Willems JH (2007) Long-term dynamics and population viability in one of the last populations of the endangered Spiranthes spiralis (Orchidaceae) in the Netherlands. Biol Conserv 134:14–21

    Article  Google Scholar 

  • Jeanmonod D, Gamisans J (2007) Flora Corsica. Edisud, Aix-en-provence

    Google Scholar 

  • Jiménez-Sierra C, Mandujano MC, Eguiarte LE (2007) Are populations of the candy barrel cactus (Echinocactus platyacanthus) in the desert of Tehuacán, Mexico at risk? Population projection matrix and life-table response analysis. Biol Conserv 135:278–292

    Article  Google Scholar 

  • Jongejans E, de Vere N, de Kroon H (2008) Demographic vulnerability of the clonal and endangered meadow thistle. Plant Ecol 198:225–240

    Article  Google Scholar 

  • Kimura M, Ohta T (1978) Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc Natl Acad Sci USA 75:2868–2872

    Article  CAS  PubMed  Google Scholar 

  • Kirchner F, Robert A, Colas B (2006) Modelling the dynamics of introduced populations in the narrow-endemic Centaurea corymbosa: a demo-genetic integration. J Appl Ecol 43:1011–1021

    Article  Google Scholar 

  • Lacy RC (1993) Vortex—a computer-simulation model for population viability analysis. Wildlife Research 20:45–65

    Article  Google Scholar 

  • Laikre LA, Allendorf FW, Aroner LC, Baker CS, Kendall KC, McKelvey K, Neel MC, Olivieri I, Ryman N, Schwarz MK, Short Bull R, Stetz JB, Tallmon A, Taylor BL, Vojta CD, Waller DM, Waples S (2009) Neglect of genetic diversity in implementation of the convention on biological diversity. Conserv Biol (Published Online, 16 Dec 2009)

  • Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460

    Article  CAS  PubMed  Google Scholar 

  • Lande R (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am Nat 142:911–927

    Article  Google Scholar 

  • Lande R (1998) Anthropogenic, ecological and genetic factors in extinction and conservation. Res Popul Ecol 40:259–269

    Article  Google Scholar 

  • Leducq J-B, Gosset C, Poiret M, Hendoux F, Vekemans X, Billiard S (2010) An experimental study of the S-Allee effect in the self-incompatible plant Biscutella neustriaca. Conserv Genet

  • Lubben J, Tenhumberg B, Tyre A, Rebarber R (2008) Management recommendations based on matrix projection models: the importance of considering biological limits. Biol Conserv 141:517–523

    Article  Google Scholar 

  • Menges ES (1991) The application of minimum viable population theory to plants. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 450–461

    Google Scholar 

  • Menges ES (1992) Stochastic modelling of extinction in plant populations. In: Fiedler PL, Jain SK (eds) Conservation biology: the theory and practice of nature conservation, preservation and management. Chapman & Hall, New York, pp 253–276

    Google Scholar 

  • Menges ES (2000) Population viability analyses in plants: challenges and opportunities. Trends Ecol Evol 15:51–56

    Article  PubMed  Google Scholar 

  • Menges ES (2008) Restoration demography and genetics of plants: when is a translocation successful? Aust J Bot 56:187–196

    Article  Google Scholar 

  • Menges ES, Dolan RW (1998) Demographic viability of populations of Silene regia in midwestern prairies: relationships with fire management, genetic variation, geographic location, population size and isolation. J Ecol 86:63–78

    Article  Google Scholar 

  • Morris WF, Doak DF (2002) Quantitative conservation biology: theory and practice of population viability analysis. Sinauer, Sunderland, MA

    Google Scholar 

  • Newman D, Pilson D (1997) Increased probability of extinction due to decreased genetic effective population size: experimental populations of Clarkia pulchella. Evolution 51:354–362

    Article  Google Scholar 

  • Olano JM, Caballero I, Loidi J, Escudero A (2005) Prediction of plant cover from seed bank analysis in a semi-arid plant community on gypsum. J Veg Sci 16:215–222

    Article  Google Scholar 

  • Olivier L, Galland JP, Maurin H, Roux JP (1995) Livre Rouge de la Flore Menacée de France. Tome 1. Muséum National d’Histoire Naturelle. Espèces Prioritaires, Paris, France

    Google Scholar 

  • Oostermeijer JGB (2000) Population viability analysis of the rare Gentiana pneumonanthe: the importance of genetics, demography and reproductive biology. In: Young AG, Clarke GM (eds) Genetics, demography and viability of fragmented populations. Cambridge University Press, Cambridge, UK, pp 313–334

    Chapter  Google Scholar 

  • Oostermeijer JGB, Brugman ML, de Boer ER, den Nijs HCM (1996) Temporal and spatial variation in the demography of Gentiana pneumonanthe, a rare perennial herb. J Ecol 84:153–166

    Article  Google Scholar 

  • Oostermeijer JGB, Luijten SH, den Nijs HCM (2003) Integrating demographic and genetic approaches in plant conservation. Biol Conserv 113:389–398

    Article  Google Scholar 

  • Petit C, Fréville H, Mignot A, Colas B, Riba M, Imbert E, Hurtrez-Bousses S, Virevaire M, Olivieri I (2001) Gene flow and local adaptation in two endemic plant species. Biol Conserv 100:21–34

    Article  Google Scholar 

  • Pfeifer M, Wiegand K, Heinrich W, Jetschke G (2006) Long-term demographic fluctuations in an orchid species driven by weather: implications for conservation planning. J Appl Ecol 43:313–324

    Article  Google Scholar 

  • Picó FX, De Kroon H, Retana J (2002) An extended flowering and fruiting season has few demographic effects in a mediterranean perennial herb. Ecology 83:1991–2004

    Google Scholar 

  • Proctor MF, Servheen C, Miller SD, Kasworm WF, Wakkinen WL (2004) A comparative analysis of management options for grizzly bear conservation in the US-Canada trans-border area. Ursus 15:16–145

    Article  Google Scholar 

  • R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Reed MJ, Mills LS, Dunning JB, Menges ES, McKelvey KS, Frye R, Beissinger SR, Anstett MC, Miller P (2002) Emerging issues in population viability analysis. Conserv Biol 16:7–19

    Article  Google Scholar 

  • Robert A, Couvet D, Sarrazin F (2007) Integration of demography and genetics in population restorations. Ecoscience 14:463–471

    Article  Google Scholar 

  • Schemske DW, Husband BC, Ruckelshaus MH, Goodwillie C, Parker IM, Bishop JG (1994) Evaluating approaches to the conservation of rare and endangered plants. Ecology 75:584–606

    Article  Google Scholar 

  • Snogerup S, Gustafsson M, Bothmer RV (1990) Brassica sect. Brassica (Brassicaceae). I. Taxonomy and variation. Willdenowia 19:271–365

    Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. Freeman, W.H. & Company, New York

    Google Scholar 

  • Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci 101:15261–15264

    Article  CAS  PubMed  Google Scholar 

  • Stubben C, Milligan B (2007) Estimating and analyzing demographic models using the popbio package in R. J Stat Softw 22(11):1–23

    Google Scholar 

  • Wagenius S, Lonsdorf E, Neuhauser C (2007) Patch aging and the S-allee effect: breeding system effects on the demographic response of plants to habitat fragmentation. Am Nat 169:383–397

    Article  Google Scholar 

  • Waite S, Hutchings MJ (1991) The effects of different management regimes on the population dynamics of Ophrys sphegodes: analysis and description using matrix models. In: Wells TCE, Willems J (eds) Population ecology of terrestrial orchids. SPB. Academic Publishing, The Hague, pp 161–175

    Google Scholar 

  • Willi Y, Van Buskirk J, Fischer M (2005) A threefold genetic allee effect: population size affects cross-compatibility, inbreeding depression and drift load in the self-incompatible Ranunculus reptans. Genetics 169:2255–2265

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Agnès Vivat and Sheila Luijten for their help in the field, Eric Imbert for his help in the field and for his comments on a first version of the manuscript. We also thank Olivier Gimenez for his help and discussion on statistical analyses. We thank two anonymous reviewers for very helpful comments and suggestions. We benefited from discussions of the NESCENT-NCEAS Working Group on Genetic Monitoring. Finally, we had insightful discussions about this work at several meetings of the ESF Science Networking Programme ConGen. This is publication ISEM-2010-001 of the Institut des Sciences de l’Evolution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Olivieri.

Additional information

Sandrine Maurice and Agnès Mignot have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 148 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noël, F., Maurice, S., Mignot, A. et al. Interaction of climate, demography and genetics: a ten-year study of Brassica insularis, a narrow endemic Mediterranean species. Conserv Genet 11, 509–526 (2010). https://doi.org/10.1007/s10592-010-0056-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-010-0056-1

Keywords

Navigation