Skip to main content
Log in

Songbird genetic diversity is lower in anthropogenically versus naturally fragmented landscapes

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Natural habitats, and the populations they sustain, are becoming increasingly fragmented by human activities. Parallels between ‘true’ islands and ‘habitat’ islands suggest that standing levels of individual genetic diversity in naturally fragmented populations may predict the genetic fate of their anthropogenically fragmented counterparts, but this hypothesis remains largely untested. We compared neutral-locus genetic diversity of individual song sparrows (Melospiza melodia) breeding in a naturally fragmented landscape (small coastal islands) to that of song sparrows in similar-sized ‘urban islands’ separated by roads and housing developments rather than by water. Individuals on coastal islands were more heterozygous and less inbred than those in urban islands. Estimates of population genetic structuring (assessed by pairwise genetic differentiation and Bayesian clustering methods) and contemporary dispersal (based on assignment tests) revealed little structure within either landscape, suggesting that lack of connectivity at the geographic scale we investigated cannot explain the reduced heterozygosity of urban birds. However, within-site genetic similarity was higher in the urban than the coastal landscape. Assuming that historic genetic diversity was similar in these two environments, our findings suggest that anthropogenically fragmented populations may lose genetic diversity faster than their naturally fragmented counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Balmford A, Green RE, Jenkins M (2003) Measuring the changing state of nature. Trends Ecol Evol 18:326–330

    Article  Google Scholar 

  • Barnett JR, Ruiz-Gutierrez V, Coulon A, Lovette IJ (2008) Weak genetic structuring indicates ongoing gene flow across white-ruffed manakin (Corapipo altera) populations in a highly fragmented Costa Rica landscape. Conserv Genet 9:1403–1412

    Article  Google Scholar 

  • Blanchet S, Rey O, Etienne R, Lek S, Loot G (2010) Species-specific responses to landscape fragmentation: implications for management strategies. Evol Appl 3:291–304

    Article  Google Scholar 

  • Brown LM, Ramey RR II, Tamburini B, Gavin TA (2004) Population structure and mitochondrial DNA variation in sedentary Neotropical birds isolated by forest fragmentation. Conserv Genet 5:743–757

    Article  CAS  Google Scholar 

  • Clinchy M, Zanette L, Boonstra R, Wingfield JC, Smith JNM (2004) Balancing food and predator pressure induces chronic stress in songbirds. Proc R Soc Lond B 271:2473–2479

    Article  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  • Cristecu R, Sherwin WB, Handasyde K, Cahill V, Cooper DW (2010) Detecting bottlenecks using BOTTLENECK 1.2.02 in wild populations: the importance of the microsatellite structure. Conserv Genet 11:1043–1049

    Article  Google Scholar 

  • Croteau EK, Lougheed SC, Krannitz PG, Mahony NA, Walker BL, Boag PT (2007) Genetic population structure of the sagebrush Brewer’s sparrow, Spizella breweri breweri, in a fragmented landscape at the northern range periphery. Conserv Genet 8:1453–1463

    Article  Google Scholar 

  • DiRienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170

    Article  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Frankham R (1997) Do island populations have lower genetic variation than mainland populations? Heredity 78:311–327

    Article  PubMed  Google Scholar 

  • Griffith SC, Stewart IRK, Owens IPF, Dawson DA, Burke T (1999) Contrasting levels of extra-pair paternity in mainland and island populations of the house sparrow (Passer domesticus): is there an ‘island effect’? Biol J Linn Soc 68:303–316

    Google Scholar 

  • Hanotte O, Zanon C, Pugh A, Greig C, Dixon A, Burke T (1994) Isolation and characterization of microsatellite loci in a passerine bird—the reed bunting Emberiza schoeniclus. Mol Ecol 3:529–530

    Article  PubMed  CAS  Google Scholar 

  • Hatchwell BJ (2009) The evolution of cooperative breeding in birds: kinship, dispersal and life history. Philos Trans R Soc B 364:3217–3227

    Article  Google Scholar 

  • Hill CE, Akçay Ç, Campbell SE, Beecher MD (2011) Extrapair paternity, song, and genetic quality in song sparrows. Behav Ecol 22:73–81

    Article  Google Scholar 

  • Hoffman JI, Forcada J, Amos W (2006) No relationship between microsatellite variation and neonatal fitness in Antarctic fur seals Arctocephalus gazella. Mol Ecol 15:1995–2005

    Article  PubMed  CAS  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed  Google Scholar 

  • Jeffery KJ, Keller LF, Arcese P, Bruford MW (2001) The development of microsatellite loci in the song sparrow, Melospiza melodia (Aves) and genotyping errors associated with good quality DNA. Mol Ecol Notes 1:11–13

    Article  CAS  Google Scholar 

  • Keller LF, Arcese P (1998) No evidence for inbreeding avoidance in a natural population of song sparrows (Melospiza melodia). Am Nat 152:380–392

    Article  PubMed  CAS  Google Scholar 

  • Keller LF, Arcese P, Smith JNM, Hochachka WM, Stearns SC (1994) Selection against inbred song sparrows during a natural population bottleneck. Nature 372:356–357

    Article  PubMed  CAS  Google Scholar 

  • Keyghobadi N (2007) The genetic implications of habitat fragmentation for animals. Can J Zool 85:1049–1064

    Article  Google Scholar 

  • Keyghobadi N, Roland J, Matter SF, Strobeck C (2005) Among- and within-patch components of genetic diversity respond at different rates to habitat fragmentation: an empirical demonstration. Proc R Soc Lond B 272:553–560

    Article  Google Scholar 

  • Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152:1753–1766

    PubMed  CAS  Google Scholar 

  • Lynch J, Whigham DF (1984) Effects of forest fragmentation on breeding bird communities in Maryland. Biol Conserv 28:287–324

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Milligan BG (2003) Maximum-likelihood estimation of relatedness. Genetics 163:1153–1167

    PubMed  Google Scholar 

  • O’Connor KD, Marr AB, Arcese P, Keller LF, Jeffery KJ, Bruford MW (2006) Extra-pair fertilization and effective population size in the song sparrow (Melospiza melodia). J Avian Biol 37:572–578

    Article  Google Scholar 

  • Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65

    Article  PubMed  CAS  Google Scholar 

  • Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudoin L, Estoup A (2004) GeneClass 2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  PubMed  CAS  Google Scholar 

  • Porlier M, Bélisle M, Garant D (2009) Non-random distribution of individual genetic diversity along an environmental gradient. Philos Trans R Soc B 364:1543–1554

    Article  Google Scholar 

  • Potvin DA, MacDougall-Shackleton EA (2009) Parental investment amplifies effects of genetic complementarity on growth rates in song sparrows, Melospiza melodia. Anim Behav 78:943–948

    Article  Google Scholar 

  • Pruett CL, Arcese P, Chan YL, Wilson AG, Patten MA, Keller LF, Winker K (2008) The effects of contemporary processes in maintaining the genetic structure of western song sparrows (Melospiza melodia). Heredity 101:67–74

    Article  PubMed  CAS  Google Scholar 

  • Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201

    Article  PubMed  CAS  Google Scholar 

  • Reid JM, Arcese P, Keller LF (2006) Intrinsic parent–offspring correlation in inbreeding level in a song sparrow (Melospiza melodia) population open to immigration. Am Nat 168:1–13

    Article  Google Scholar 

  • Reid JM, Arcese P, Keller LF, Elliott KH, Sampson L, Hasselquist D (2007) Inbreeding effects on immune response in free-living song sparrows (Melospiza melodia). Proc R Soc Lond B 274:697–706

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Riley SPD, Pollinger JP, Sauvajot RM, York EC, Bromley C, Fuller TK, Wayne RK (2006) A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol Ecol 15:1733–1741

    Article  PubMed  CAS  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    PubMed  CAS  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Smith JNM, Taitt MJ, Rogers CM, Arcese P, Keller LF, Cassidy ALEV, Hochachka WM (1996) A metapopulation approach to the population biology of the song sparrow Melospiza melodia. Ibis 138:120–128

    Google Scholar 

  • Stratford JA, Robinson WD (2005) Gulliver travels to the fragmented tropics: geographic variation in mechanisms of avian extinction. Front Ecol Environ 3:91–98

    Article  Google Scholar 

  • Walker FM, Sunnucks P, Taylor AC (2008) Evidence for habitat fragmentation altering within-patch processes in wombats. Mol Ecol 17:1674–1684

    Article  PubMed  Google Scholar 

  • Wang J (2011) COANCESTRY: a program for simulating, estimating and analyzing relatedness and inbreeding coefficients. Mol Ecol Resour 11:141–145

    Article  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wilson AG, Arcese P (2008) Influential factors for natal dispersal in an avian island metapopulation. J Avian Biol 39:341–347

    Article  Google Scholar 

  • Wilson AG, Arcese P, Keller L, Pruett C, Patten MA, Chan Y (2009) The contribution of island populations to in situ genetic conservation. Conserv Genet 10:419–430

    Article  Google Scholar 

  • Zanette L, Smith JNM, Van Oort H, Clinchy M (2003) Synergistic effects of food and predators on annual reproductive success in song sparrows. Proc R Soc Lond B 270:277–803

    Article  Google Scholar 

  • Zanette L, MacDougall-Shackleton EA, Clinchy M, Smith JNM (2005) Brown-headed cowbirds skew host offspring sex ratios. Ecology 86:815–820

    Article  Google Scholar 

  • Zanette L, Clinchy M, Smith JNM (2006a) Combined food and predator effects on songbird nest survival and annual reproductive success: results from a bi-factorial experiment. Oecologia 147:632–640

    Article  PubMed  Google Scholar 

  • Zanette L, Clinchy M, Smith JNM (2006b) Food and predators affect egg production in song sparrows. Ecology 87:2459–2467

    Article  PubMed  Google Scholar 

  • Zink RM, Dittmann DL (1993) Gene flow, refugia, and evolution of geographic variation in the song sparrow (Melospiza melodia). Evolution 47:717–728

    Article  Google Scholar 

Download references

Acknowledgments

We thank B. Clinchy, C. de Ruyck, L. Erckman, A. Duncan-Rastogi, J. Malt and T. Sperry for assistance; B. C. Parks, the Saanich Municipality and private landholders for access; N. Keyghobadi, S. MacDougall-Shackleton, S. Riley and three anonymous referees for helpful comments; and NSERC Canada for funding. This research was approved by the University of Western Ontario’s Animal Use Subcommittee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. MacDougall-Shackleton.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacDougall-Shackleton, E.A., Clinchy, M., Zanette, L. et al. Songbird genetic diversity is lower in anthropogenically versus naturally fragmented landscapes. Conserv Genet 12, 1195–1203 (2011). https://doi.org/10.1007/s10592-011-0222-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-011-0222-0

Keywords

Navigation