Skip to main content

Advertisement

Log in

Phylogeography and population history of Leopardus guigna, the smallest American felid

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The guigna (Leopardus guigna) is the smallest and most-restricted New World cat species, inhabiting only around 160,000 km2 of temperate rain forests in southern South America and is currently threatened by habitat loss, fragmentation and human persecution. We investigated phylogeographic patterns of genetic diversity, demographic history and barriers to gene flow with 116 individuals sampled across the species geographic range by analyzing 1,798 base pairs of the mtDNA (496 bp HVSI region, 720 bp NADH-5 gene, 364 bp from 16S gene and 218 bp from ATP-8 gene) and 15 microsatellite loci. Mitochondrial DNA data revealed a clear phylogeographic pattern with moderate separation between northern and southern Chilean populations supporting recognized subspecific partitions based on morphology. A recent demographic expansion was inferred for the southern-most group (San Rafael Lake), presumably due to the complete coverage of this area during the last glacial period, 28000–16000 years BP. Geographical barriers such as the Andes Mountains and the Chacao Channel have partially restricted historic and more-recent gene flow and the Chiloé Island population has diverged genetically since being separated from the mainland 7000 years BP. This is the first study of the genetic structure of this threatened species throughout its whole geographic range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abraham EM, Garleff K, Liebricht H et al (2000) Geomorphology and Paleoecology of the Arid Diagonal in southern South America. Zeitschrift für Angewandte Geologie SH1:55–61

    Google Scholar 

  • Acosta-Jamett G, Simonetti JA (2004) Habitat use by Oncifelis guigna and Pseudalopex culpaeus in a fragmented forest landscape in central Chile. Biodivers Conserv 13:1135–1151

    Google Scholar 

  • Acosta-Jamett G, Simonetti JA, Bustamante RO et al (2003) Metapopulation approach to assess survival of Oncifelis guigna in fragmented forests of central Chile: a theoretical model. J Neotrop Mammal 10:217–229

    Google Scholar 

  • Aragón E, Goin FJ, Aguilera YE et al (2011) Palaeogeography and palaeoenvironments of northern Patagonia from the Late Cretaceous to the Miocene: the Palaeogene Andean gap and the rise of the North Patagonian High Plateau. Biol J Linn Soc 103:305–315

    Google Scholar 

  • Armesto JJ, León-Lobos P, Arroyo MTK (1996) Los bosques templados de Chile y Argentina: una isla biogeográfica. In: Armesto JJ, Villagrán C, Arroyo MTK (eds) Ecología de los bosques nativos de Chile. Editorial Universitaria, Santiago, pp 23–28

    Google Scholar 

  • Arroyo MTK, Cavieres L, Peñaloza A et al (1996) Relaciones fitogeográficas y patrones regionales de riqueza de especies en la flora del bosque lluvioso templado de Sudamérica. In: Armesto JJ, Villagrán C, Arroyo MTK (eds) Ecología de los bosques nativos de Chile. Editorial Universitaria, Santiago, pp 71–99

    Google Scholar 

  • Arroyo MTK, Marquet PA, Marticorena C et al (2004) Chilean winter rainfall-Valdivian forests. In: Mittermeier RA, Gil PR, Hoffmann M et al (eds) Hotspots Revisited: Earth’s Biologically Wealthiest and most Threatened Ecosystems. CEMEX, México D.F., pp 99–103

    Google Scholar 

  • Balding DJ (2003) Likelihood-based inference for genetic correlation coefficients. Theor Popul Biol 63:221–230

    PubMed  Google Scholar 

  • Bandelt H-J, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    CAS  PubMed  Google Scholar 

  • Bellemain E, Taberlet P (2004) Improved noninvasive genotyping method: application to brown bears (Ursus arctos) feces. Mol Ecol Notes 4:519–522

    CAS  Google Scholar 

  • Belmar-Lucero S, Godoy P, Ferrés M et al. (2009) Range expansion of Oligoryzomys longicaudatus (Rodentia, Sigmodontinae) in Patagonian Chile, and first record of Hantavirus in the region. Rev Chil Hist Nat 82:265-–275

    Google Scholar 

  • Bennett KD (2004) Continuing the debate on the role of Quaternary environmental change for macroevolution. Philos Trans R Soc Lond B 359:295–303

    CAS  Google Scholar 

  • Bennett KD, Provan J (2008) What do we mean by refugia? Quat Sci Rev 27:2449-–2455

    Google Scholar 

  • Bermingham E, Moritz C (1998) Comparative phylogeography: concepts and applications. Mol Ecol 7:367–369

    Google Scholar 

  • Bonin A, Bellemain E, Bronken Eidesen P et al (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273

    CAS  PubMed  Google Scholar 

  • Bosshard M (2011) Evidencias genéticas de la historia glacial de Laureliopsis philippiana. Dissertation, Universidad de Chile, Santiago, Chile. p 33

  • Burban C, Petit RJ, Carcreff E et al (1999) Rangewide variation of the maritime pine bast scale Matsucoccus feytaudi Duc (Homoptera: Matsucoccidae) in relation to the genetic structure of its host. Mol Ecol 8:1593–1602

    PubMed  Google Scholar 

  • Burbrink FT, Lawson R, Slowinski JB (2000) Mitochondrial DNA phylogeography of the polytypic North American rat snake (Elaphe obsoleta): a critique of the subspecies concept. Evolution 54:2107–2118

    CAS  PubMed  Google Scholar 

  • Cabrera A (1957) Catálogo de los mamíferos de América del Sur. Parte 1, Metatheria-Unguiculata-Carnivora. Revista del Museo Argentino de Ciencias Naturales 4:1–37

    Google Scholar 

  • Clapperton CM (1993) Nature of environmental changes in South America at the Last Glacial Maximum. Palaeogeogr Palaeoclim Palaeoecol 101:189–208

    Google Scholar 

  • Cofre H, Marquet PA (1999) Conservation status, rarity, and geographic priorities for conservation of Chilean mammals: an assessment. Biol Conserv 88:53–68

    Google Scholar 

  • CONAMA (2011) Reglamento para la Clasificación de las Especies Silvestres. Séptimo proceso para la clasificación de especies Acuerdo N°9/2011. Ministerio Secretaría General de la Presidencia de la República de Chile

  • Correa P, Roa A (2005) Relaciones tróficas entre Oncifelis guigna, Lycalopex culpaeus, Lycalopex griseus y Tyto alba en un ambiente fragmentado de la zona central de Chile. J Neotrop Mammal 12:57–60

    Google Scholar 

  • Cossios D, Lucherini M, Ruiz-García M et al (2009) Influence of ancient glacial periods on the Andean fauna: the case of the pampas cat (Leopardus colocolo). BMC Evol Biol 9:1–12

    Google Scholar 

  • Crandall KA, Bininda-Emonds ORP, Mace GM et al (2000) Considering evolutionary processes in conservation biology. TREE 15:290–295

    PubMed  Google Scholar 

  • Creel S, Spong G, Sands J et al (2003) Population size estimation in Yellowstone wolves with errorprone noninvasive microsatellite genotypes. Mol Ecol 12:2003–2009

    PubMed  Google Scholar 

  • Culver M, Johnson WE, Pecon-Slattery J et al (2000) Genomic ancestry of the American puma (Puma concolor). J of Heredity 91:186–197

    CAS  Google Scholar 

  • Dalén L, Nyström V, Valdiosera C et al (2007) Ancient DNA reveals lack of postglacial habitat tracking in the arctic fox. Proc Natl Acad Sci USA 104:6726–6729

    PubMed Central  PubMed  Google Scholar 

  • Denton GH, Heusser CJ, Lowell TV et al (1999) Interhemispheric linkage of paleoclimate during the last glaciation. Geogr Ann 81:107–153

    Google Scholar 

  • Devictor V, Julliard R, Couvet D, Jiguet F (2008) Birds are tracking climate warming, but not fast enough. Proc R Soc B 275:2743–2748

    PubMed Central  PubMed  Google Scholar 

  • Drummond A, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    PubMed Central  PubMed  Google Scholar 

  • Dunstone N, Durbin L, Wyllie I, Freer RA, Acosta JG, Mazzolli M, Rose S (2002) Spatial organization, ranging behaviour and habitat use of the kodkod (Oncifelis guigna) in southern Chile. J Zool 257:1–11

    Google Scholar 

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581

    CAS  PubMed  Google Scholar 

  • Eizirik E, Bonatto SL, Johnson WE et al (1998) Phylogeographic patterns and evolution of the mitochondrial DNA control region in two Neotropical cats (Mammalia, Felidae). J Mol Evol 47:613–624

    CAS  PubMed  Google Scholar 

  • Eizirik E, Kim J-H, Menotti-Raymond M et al (2001) Phylogeography, population history and conservation genetics of jaguars (Panthera onca, Mammalia, Felidae). Mol Ecol 10:65–79

    CAS  PubMed  Google Scholar 

  • Eronen JT, Rook L (2004) The Mio-Pliocene European primate fossil record: dynamics and habitat tracking. J Hum Evol 47:323–341

    PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567

    Google Scholar 

  • Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Filatov DA (2002) Proseq: a software for preparation and evolutionary analysis of DNA sequence data sets. Mol Ecol Notes 2:621–624

    CAS  Google Scholar 

  • Formas JR, Brieva LM (2000) Population genetics of the Chilean frog Batrachyla leptopus (Leptodactylidae). Genet Mol Biol 23:43–48

    CAS  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2005) Introduction to conservation genetics. Cambridge University Press, Cambridge, p 617

    Google Scholar 

  • Frantz AC, Pope LC, Carpenter PJ et al (2003) Reliable microsatellite genotyping of the Eurasian badger (Meles meles) using faecal DNA. Mol Ecol 12:1649–1661

    CAS  PubMed  Google Scholar 

  • Freeman AR, Machugh DE, Mckeown S et al (2001) Sequence variation in the mitochondrial DNA control region of wild African cheetahs (Acinonyx jubatus). Heredity 86:355–362

    CAS  PubMed  Google Scholar 

  • Freer RA (2004) The Spatial Ecology of the Güiña (Oncifelis guigna) in Southern Chile. D.Phil. Dissertation. University of Durham, UK. p 219

  • Fu Y-X (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fu Y-X, Li W-H (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    CAS  PubMed Central  PubMed  Google Scholar 

  • Funk DJ, Omland KE (2003) Species-level paraphyly and polyphyly: frequency, Causes, and Consequences, with Insights from Animal Mitochondrial DNA. Annu Rev Ecol Evol Syst 34:397–423

    Google Scholar 

  • Gajardo R (1994) La vegetación natural de Chile: Clasificación y distribución geográfica. Editorial Universitaria, Chile

    Google Scholar 

  • Gálvez N, Hernández F, Laker J et al (2013) Forest cover outside protected areas plays an important role in the conservation of the Vulnerable guiña Leopardus guigna. Oryx 47:251–258

    Google Scholar 

  • Garzione CN, Hoke GD, Libarkin JC et al (2008) Rise of the Andes. Science 320:1304–1307

    CAS  PubMed  Google Scholar 

  • Graham CH, VanDerWal J, Phillips SJ et al. (2010) Dynamic refugia and species resistence: Tracking spatial shifts in habitat trough time. Ecography 33:1062-–1069

    Google Scholar 

  • Guillot G, Mortier F, Estoup A (2005) Geneland: a computer package for landscape genetics. Mol Ecol Notes 5:712–715

    CAS  Google Scholar 

  • Haig SM, Wagner RS, Forsman ED et al (2001) Geographic variation and genetic structure in Spotted Owls. Conserv Genet 2:25–40

    CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:1–9

    Google Scholar 

  • Hanski I, Simberloff D (1997) The metapopulation approach, its history, conceptual domain, and application to conservation. In: Hanski IA, Gilpin ME (eds) Metapopulation biology: ecology, genetics, and evolution. Academic Press, San Diego, pp 5–26

    Google Scholar 

  • Hanski I, Pöyry J, Pakkala T et al (1995) Multiple equilibria in metapopulation dynamics. Nature 377:618–621

    CAS  Google Scholar 

  • Heller R, Chikhi L, Siegismund HR (2013) The confounding effect of population structure on bayesian skyline plot inferences of demographic history. PLoS ONE 8(5):e62992

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herrmann TM, Schüttler E, Benavides P et al (2013) Values, animal symbolism, and human-animal relationships associated to two threatened felids in Mapuche and Chilean local narratives. J Ethnobiol Ethnomed 9:41–56

    PubMed Central  PubMed  Google Scholar 

  • Heusser CJ, Heusser LE, Lowell TV (1999) Paleoecology of The Southern Chilean Lake District-Isla Grande de Chiloé during Middle-late Llanquihue Glaciation and Deglaciation. Geogr Ann Phys Geogr 81:231–284

    Google Scholar 

  • Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Phil Trans Roy Soc Lond B 359:183–195

    CAS  Google Scholar 

  • Himes CMT, Gallardo MH, Kenagyg J (2008) Historical biogeography and postglacial recolonization of South American temperate rain forest by the relictual marsupial Dromiciops gliroides. J Biogeog 35:1415–1424

    Google Scholar 

  • Hinojosa LF, Villagrán C (1997) Historia de los bosques del sur de América, I: antecedentes paleobotánicos, geológicos y climáticos del Terciario del Cono Sur de América. Rev Chil Hist Nat 70:225–239

    Google Scholar 

  • Ho SYW, Shapiro B (2011) Skyline-plot methods for estimating demographic history from nucleotide sequences. Mol Ecol Resour 11:423–434

    PubMed  Google Scholar 

  • Hoelzel AR, Green A (1992) Analysis of population-level variation by sequencing PCR-amplified DNA. In: Hoelzel AR (ed) Molecular genetic analysis of populations. Oxford University Press, Oxford, pp 159–187

    Google Scholar 

  • Hofreiter M, Stewart J (2009) Ecological change, range fluctuations and population dynamics during the Pleistocene. Curr Biol 19:R584–R594

    CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Bull JJ, Cunningham CW (1996) Combining data in phylogenetic analysis. TREE 11:152–158

    CAS  PubMed  Google Scholar 

  • Ihaka R, Gentleman R (1996) R: a language for data analysis and Graphics. J Comput Graphical Statistics 5:299–314

    Google Scholar 

  • Inskip C, Zimmermann A (2009) Human-felid conflict: a review of patterns and priorities worldwide. Oryx 43:18–34

    Google Scholar 

  • IUCN (2013) IUCN Red List of Threatened Species. Version 2013.2. <www.iucnredlist.org>. Accessed 29 Nov 2013

  • Johnson WE, Culver M, Iriarte AJ et al (1998) Tracking the evolution of the elusive Andean Mountain Cat (Oreailurus jacobita) from mitochondrial DNA. J Hered 89:227–232

    CAS  PubMed  Google Scholar 

  • Johnson WE, Pecon-Slattery J, Eizirik E et al (1999) Disparate phylogeographic patterns of molecular genetic variation in four closely related South American small cat species. Mol Ecol 8:S79–S94

    CAS  PubMed  Google Scholar 

  • Johnson WE, Eizirik E, Murphy WJ et al (2006) The Late Miocene radiation of modern Felidae: a genetic assessment. Science 311:73–77

    CAS  PubMed  Google Scholar 

  • Klicka J, Zink RM (1997) The importance of recent ice ages in speciation: a failed paradigm. Science 277:1666–1669

    CAS  Google Scholar 

  • Kottek M, Grieser J, Beck C et al (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263

    Google Scholar 

  • Kuhner MK (2006) LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics 22:768–770

    CAS  PubMed  Google Scholar 

  • Lessa EP, D’Elia G, Pardiñas UFJ (2010) Genetic footprints of late Quaternary climate change in the diversity of Patagonian-Fueguian rodents. Mol Ecol 19:3031–3037

    PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    CAS  PubMed  Google Scholar 

  • Lindenmayer DB, Fischer J (2006) Habitat Fragmentation and Landscape Change: An Ecological and Conservation Synthesis. Island Press, Washington

    Google Scholar 

  • Malcolm JR, Liu C, Neilson RP et al (2005) Global warming and extinctions of endemic species from biodiversity hotspots. Conserv Biol 20:538–548

    Google Scholar 

  • Mathiasen P, Premoli AC (2010) Out in the cold: genetic variation of Nothofagus pumilio (Nothofagaceae) provides evidence for latitudinally distinct evolutionary histories in austral South America. Mol Ecol 19:371–385

    CAS  PubMed  Google Scholar 

  • McCulloch RD, Bentley MJ, Purves RS et al (2000) Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. J Quat Sci 15:409–417

    Google Scholar 

  • Menotti-Raymond M, David VA, Lyons LA et al (1999) A genetic linkage map of microsatellites in the domestic cat (Felis catus). Genomics 57:9–23

    CAS  PubMed  Google Scholar 

  • Mercer JH (1983) Cenozoic glaciation in the Southern Hemisphere. Annu Rev Earth Planet Sci 11:99–132

    CAS  Google Scholar 

  • Miller MP (2005) Alleles In Space: computer software for the joint analysis of interindividual spatial and genetic information. J Hered 96:722–724

    CAS  PubMed  Google Scholar 

  • Miller MP, Haig SM, Wagner RS (2006) Phylogeography and spatial genetic structure of the Southern Torrent Salamander: implications for conservation and management. J Hered 97:561–570

    CAS  PubMed  Google Scholar 

  • Montenegro PN (2011) Filogeografía de Weinmannia trichosperma: Herencia genética de una historia glacial en el sur de Sudamérica. Dissertation, Universidad De Chile. pp 52

  • Moreno PI (2000) Climate, fire, and vegetation between about 13000 and 9200 14C yr B.P. in the Chilean Lake District. Quat Res 54:81–89

    Google Scholar 

  • Moreno PI, Villagrán C, Marquet PA et al (1994) Quaternary paleobiogeography of northern and central Chile. Rev Chil Hist Nat 67:487–502

    Google Scholar 

  • Moreno PI, Lowell TV, Jacobson JR Jr et al (1999) Abrupt vegetation and climate changes during the last glacial maximum and last termination in the Chilean Lake District: a case study from Canal de la Puntilla (41°S). Geogr Ann 81:285–311

    Google Scholar 

  • Moritz C (2002) Strategies to protect biological diversity and the processes that sustain it. Systematic Biol 51:238–254

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    CAS  PubMed  Google Scholar 

  • Napolitano C (2012). Filogeografía, inferencia demográfica y genética de la conservación del felino Leopardus guigna en el sur de Sudamérica. Dissertation, Universidad de Chile. pp 255

  • Navidi W, Arnheim N, Waterman MS (1992) A multiple-tube approach for accurate genotyping of very small DNA samples by using PCR: statistical considerations. Am J Hum Genet 50:347–359

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nicholson GA, Smith V, Jónsson F et al (2002) Assessing population differentiation and isolation from single nucleotide polymorphism data. J R Stat Soc B 64:695–715

    Google Scholar 

  • Nowell K, Jackson P (1996) Status survey and conservation action plan: wild cats. IUCN/SSC Cat Specialist Group, Gland

    Google Scholar 

  • Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University

    Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933–938

    Google Scholar 

  • Osgood WH (1943) The mammals of Chile. Field Mus Nat Hist Zool 30:1–268

    Google Scholar 

  • Palma RE, Rivera-Milla E, Yates TL et al (2002) Phylogenetic and biogeographic relationships of the mouse opossum Thylamys (Didelphimorphia, Didelphidae) in southern South America. Mol Phylogenet Evol 25:245–253

    Google Scholar 

  • Palma RE, Rivera-Milla E, Salazar-Bravo J et al (2005) Phylogeography of Oligoryzomys longicaudatus (Rodentia: sigmodontinae) in temperate South America. J Mammal 86:191–200

    Google Scholar 

  • Palsbøll PJ, Bérubé M, Allendorf FW (2006) Identification of management units using population genetic data. TREE 22:11–16

    PubMed  Google Scholar 

  • Pardiñas UFJ, Teta P, D’Elía G et al (2011) The evolutionary history of sigmodontine rodents in Patagonia and Tierra del Fuego. Biol J Linn Soc 103:495–513

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Rev Ecol Evol Syst 2006(37):637–669

    Google Scholar 

  • Patterson BD (2010) Climate change and faunal dynamics in the uttermost part of the earth. Mol Ecol 19:3019–3021

    PubMed  Google Scholar 

  • Peter MB, Wegmann D, Excoffier L (2010) Distinguishing between population bottleneck and population subdivision by a Bayesian model choice procedure. Mol Ecol 19:4648–4660

    PubMed  Google Scholar 

  • Phillimore AB, Owens IPF (2006) Are subspecies useful in evolutionary and conservation biology? Proc Royal Soc B 273:1049–1053

    Google Scholar 

  • Pons O, Petit RJ (1995) Estimation, variance and optimal sampling of gene diversity. I: haploid locus. Theor Appl Genet 90:462–470

    CAS  PubMed  Google Scholar 

  • Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quintana V, Yáñez J, Valdebenito M (2000) Orden Carnivora. In: Muñoz A, Yáñez J (eds) Mamíferos de Chile. CEA Ediciones, Valdivia, pp 155–187

    Google Scholar 

  • Raymond R, Rousset M (1995) GENEPOP: (Version 4) population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reside AE, VanDerWal J, Phillips BL et al (2013) Climate change refugia for terrestrial biodiversity: defining areas that promote species persistence and ecosystem resilience in the face of global climate change. National Climate Change Adaptation Research Facility, Gold Coast, p 216

    Google Scholar 

  • Rodríguez-Serrano E, Cancino RA, Palma RE (2006) Molecular phylogeography of Abrothrix olivaceus (Rodentia: Sigmodontinae) in Chile. J Mammal 87:971–-980

    Google Scholar 

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  PubMed  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Res 8:103–106

    Google Scholar 

  • Ruiz-García M, Luengos E, Lucherini M et al (2001) Distribución alélica para los microsatélites FCA96, FCA45, FCA43, FCA08, FCA126 para los félidos neotropicales Oncifelis geoffroyi, Oncifelis guigna y Lynchailurus colocolo en Argentina, Paraguay y Bolivia: Intento de diferenciación de especies mediante excrementos y pelos. Acta Biol Colomb 6:79

    Google Scholar 

  • Saiki RK, Scharf S, Faloona F et al (1985) Enzimatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350

    CAS  PubMed  Google Scholar 

  • Samaniego H, Marquet PA (2009) Mammal and butterfly species richness in Chile: taxonomic covariation and history. Rev Chil Hist Nat 82:135–151

    Google Scholar 

  • Sandel B, Arge L, Dalsgaard B et al (2011) The influence of Late Quaternary climate-change velocity on species endemism. Science 334:660–664

    CAS  PubMed  Google Scholar 

  • Sanderson J, Sunquist ME, Iriarte A (2002) Natural history and landscape-use of guignas (Oncifelis guigna) on Isla Grande de Chiloé, Chile. J Mammal 83:608–613

    Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotech 18:233–234

    CAS  Google Scholar 

  • Segovia RA, Pérez MF, Hinojosa LF (2012) Genetic evidence for glacial refugia of the temperate tree Eucryphia cordifolia (Cunoniaceae) in Southern South America. Am J Bot 99:121–129

    PubMed  Google Scholar 

  • Sérsic AN, Cosacov A, Cocucci AA et al (2011) Emerging phylogeographical patterns of plants and terrestrial vertebrates from Patagonia. Biol J Linn Soc Lond 103:475–494

    Google Scholar 

  • Sillero-Zubiri C, Laurenson MK (2001) Interactions between carnivores and local communities: conflict or co-existence? In: Gittleman JL, Funk SM, Macdonald D, Wayne RK (eds) Carnivore Conservation. Cambridge University Press, Cambridge, pp 282–312

    Google Scholar 

  • Silva-Rodriguez EA, Ortega-Solís GR, Jiménez JE (2007) Human attitudes toward wild felids in a human-dominated landscape of Southern Chile. Cat News 46:19–21

    Google Scholar 

  • Simonetti JA, Acosta G (2002) Conservando biodiversidad en tierras privadas: el ejemplo de los carnívoros. Ambiente y Desarrollo 18:51–59

    Google Scholar 

  • Sinclair EA, Swenson EL, Wolfe ML et al (2001) Gene flow estimates in Utah’s cougars imply management beyond Utah. Anim Conserv 4:257–264

    Google Scholar 

  • Smith MF, Kelt DA, Patton JL (2001) Testing models of diversification in mice in the Abrothrix olivaceus/xanthorhinus complex in Chile and Argentina. Mol Ecol 10:397–405

    CAS  PubMed  Google Scholar 

  • Smith DA, Ralls K, Hurt A et al (2006) Assessing reliability of microsatellite genotypes from kit fox faecal samples using genetic and GIS analyses. Mol Ecol 15:387–406

    CAS  PubMed  Google Scholar 

  • Taberlet P, Griffin S, Goossens B et al (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 24:3189–3194

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stewart JR (2008) The progressive effect of the individualistic response of species to Quaternary climate change: an analysis of British mammalian faunas. Quat Sci Rev 27:2499-–2508

    Google Scholar 

  • Stewart JR (2009) The evolutionary consequence of the individualistic response to climate change. J Evol Biol 22:2363-–2375

    Google Scholar 

  • Taberlet P, Fumagalli L, Wust-Saucy A-G et al (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464

    CAS  PubMed  Google Scholar 

  • Taberlet P, Waits LP, Luikart G (1999) Noninvasive genetic sampling: look before you leap. Trends Ecol Evol 14:323–327

    PubMed  Google Scholar 

  • Tajima F (1989) Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. Genetics 123:585–595

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor BL, Dizon AE (1999) First policy then science: why a management unit based solely on genetic criteria cannot work. Mol Ecol 8:S11–S16

    CAS  PubMed  Google Scholar 

  • Taylor PD, Fahrig L, Henein K et al (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573

    Google Scholar 

  • Trigo TC, Freitas TRO, Kunzler G et al (2008) Inter-species hybridization among Neotropical cats of the genus Leopardus, and evidence for an introgressive hybrid zone between L. geoffroyi and L. tigrinus in southern Brazil. Mol Ecol 17:4317–4333

    CAS  PubMed  Google Scholar 

  • Uphyrkina O, Johnson WE, Quigley H et al (2001) Phylogenetics, genome diversity and origin of modern leopard, Panthera pardus. Mol Ecol 10:2617–2633

    CAS  PubMed  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM et al (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Google Scholar 

  • Victoriano PF, Ortíz JC, Benavides ER et al (2008) Comparative phylogeography of codistributed species of Chilean Liolaemus (Squamata: Tropiduridae) from the central-southern Andean range. Mol Ecol 17:2397–2416

    CAS  PubMed  Google Scholar 

  • Vidal MA, Moreno PI, Poulin E (2012) Genetic diversity and insular colonization of Liolaemus pictus (Squamata, Liolaeminae) in north-western Patagonia. Aust Ecol 37:67–77

    Google Scholar 

  • Villagrán C (1988) Expansion of Magellanic Moorland during the late Pleistocene: palynological evidence from northern Isla de Chiloé, Chile. Quat Res 30:304–314

    Google Scholar 

  • Villagrán C, Hinojosa LF (1997) Historia de los bosques del sur de Sudamérica, II: análisis fitogeográfico. Rev Chil Hist Nat 70:241–267

    Google Scholar 

  • Villagrán C, Hinojosa LF (2005) Esquema Biogeográfico de Chile. In: Morrone JJ, Llorente Bousquets J (eds) Regionalización Biogeográfica en Iberoámeríca y tópicos afines. Ediciones de la Universidad Nacional Autónoma de México, Jiménez Editores, México, pp 551–577

    Google Scholar 

  • Villagrán C, Armesto JJ, Leiva R (1986) Recolonización postglacial de Chiloé insular: evidencias basadas en la distribución geográfica y los modos de dispersión de la flora. Rev Chil Hist Nat 59:19–39

    Google Scholar 

  • Waits LP, Paetkau D, Strobeck C (1998) The genetics of the bears of the world. In: Servheen C (ed) Bear Conservation Act. IUCN, Gland, pp 25–32

    Google Scholar 

  • Wayne RK, Lehman N, Allard MW et al (1992) Mitochondrial DNA variability of the gray wolf: genetic consequences of population decline and habitat fragmentation. Conserv Biol 6:559–569

    Google Scholar 

  • Webb SD (1991) Ecogeography and the great American interchange. Paleobiology 17:266–280

    Google Scholar 

  • Willson K, Newton A, Echeverría C et al (2005) A vulnerability analysis of the temperate forests of south central Chile. Biol Conserv 122:9–21

    Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed Central  PubMed  Google Scholar 

  • Woodroffe R, Ginsberg JR (1998) Edge effects and the extinction of wildlife inside protected areas. Science 280:2126–2128

    CAS  PubMed  Google Scholar 

  • Woodroffe R, Thirgood S, Rabinowitz A (2005) People and wildlife: conflict or coexistence?. Cambridge University Press, UK

    Google Scholar 

  • Wozencraft WC (1993) Order Carnivora. In: Wilson DE, Reeder DM (eds) Mammal species of the world: a taxonomic and geographic reference. Smithsonian Institution Press, Washington, DC, pp 279–348

    Google Scholar 

  • Zink RM (2004) The role of subspecies in obscuring avian biological diversity and misleading conservation policy. Proc R Soc Lond B 271:561–564

    Google Scholar 

  • Zorondo F (2005) Conservación de carnívoros en Chile central: el factor social. Thesis, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. pp 41

Download references

Acknowledgments

Guignas were captured with permission from the Agriculture and Livestock Service (SAG) in Chile, capture permit numbers 814/13-Feb-2008, 109/9-Jan-2009, 1220/22-Feb-2010 and 1708/26-Mar-2010. Samples were obtained in Argentina with permission from the National Parks Administration (APN), permit number 1002/8-May-2009. Samples were imported with permission from the Agriculture and Livestock Service (SAG) in Chile, permit number 30/09. C.N. acknowledges support from the doctoral fellowship ICM P05-002 from the Instituto de Ecología y Biodiversidad (IEB, Facultad de Ciencias, Universidad de Chile), the Emerging Leaders in The Americas Program (ELAP, Canadian Bureau for International Education, Government of Canada) and Becas Chile para pasantías doctorales 2010 (CONICYT, Chile). This study was funded by the Instituto de Ecología y Biodiversidad (Facultad de Ciencias, Universidad de Chile), Panthera Kaplan Awards Program (Panthera Foundation, New York, USA), Scott Neotropical Fund Award (Cleveland Metroparks Zoo & the Cleveland Zoological Society, Cleveland, USA) and the Eric York Scholarship (Felidae Conservation Fund, California, USA). This research was supported in part by the Intramural Research Program of the NCI, NIH. We wish to thank Benito González, Emma Elgueta, Milton Gallardo (Universidad Austral), Jaime Rau (Universidad de Los Lagos), Oscar Skewes (Universidad de Concepción), Bárbara Zentilli (CODEFF), Denise Donoso, Nicolás Gálvez, Felipe Hernández, Elke Schüttler, Cristián Bonacic, Martín Monteverde (Centro de Ecología Aplicada del Neuquén—Argentina), José Luis Brito (Museo Municipal de Ciencias Naturales y Arqueología de San Antonio), Juan Carlos Torres (Museo de Historia Natural Santiago), José Yáñez (Museo de Historia Natural Santiago), Osvaldo Rojas (Museo de Historia Natural Calama), Fernando Soto (Museo de Historia Natural de Valparaíso), Elvira Solar (Museo de Zoología Universidad de Concepción), Franklin Troncoso (Museo de Historia Natural de Concepción), Luis Villanueva (SAG VII Región), Cecilia González (SAG RM), David Flores (Museo de Ciencias Naturales Bernardino Rivadavia—Argentina), Diego Verzi (Museo de La Plata—Argentina), Manuel Valdés (Parque Tantauco), Bernardita Silva, Lito Quezada, Maximiliano Sepúlveda, Javier Cabello, Alejandro Bravo (Universidad Austral), Jorge Valenzuela (CECPAN), Andrés Charrier, Juan Luis Celis, Buin Zoo and Fidel Ovidio Castro (Banco de Recursos Genéticos, Facultad de Ciencias Veterinarias, Universidad de Concepción, Campus Chillán) for generous collaboration with samples for this study. We specially thank Magdalena Bennett for map elaboration. We thank Sylvain Faugeron and Juliana Vianna de Abreu for help with molecular markers. Special thanks to Jennifer Hetz, Mónica Mora, Valentina Sánchez, Tatiana Vuskovic, Verónica Solé, Rousset Palou, Yuri Zúñiga and Juan Vidal for assisting in the capture of guignas. We thank Raleigh International for logistical support in collection of samples at San Rafael Lake. We thank Parque Ahuenco, especially to Alberto Carvacho, for kindly letting us work in their lands. We thank the Sindicato de Pescadores Mar Adentro from Chepu, especially to Carlos Villarroel, for their kind help during field work. We thank Parque Tantauco, especially to Alan Bannister, for their kind support and for letting us work in their lands. We thank the Senda Darwin Foundation, Inés Hanning from Caulín, and many other local land owners in Chiloé Island who kindly let us work in their lands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constanza Napolitano.

Additional information

Data Accessibility

Data available from the Dryad Digital Repository http://doi.org/10.5061/dryad.1035h, GenBank accession numbers KF979174-KF979217, KF979218-KF979261, KF979262-KF979304 and TreeBASE accession number S15147 http://purl.org/phylo/treebase/phylows/study/TB2:S15147.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 565 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Napolitano, C., Johnson, W.E., Sanderson, J. et al. Phylogeography and population history of Leopardus guigna, the smallest American felid. Conserv Genet 15, 631–653 (2014). https://doi.org/10.1007/s10592-014-0566-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-014-0566-3

Keywords

Navigation