Skip to main content
Log in

Comparison of 2D debris-flow simulation models with field events

  • Published:
Computational Geosciences Aims and scope Submit manuscript

Three two-dimensional (2D) debris-flow simulation models are applied to two large well-documented debris-flow events which caused major deposition of solid material on the fan. The models are based on a Voellmy fluid rheology reflecting turbulent-like and basal frictional stresses, a quadratic rheologic formulation including Bingham, collisional and turbulent stresses, and a Herschel–Bulkley rheology representing a viscoplastic fluid. The rheologic or friction parameters of the models are either assumed a priori or adjusted to best match field observations. All three models are capable of reasonably reproducing the depositional pattern on the alluvial fan after the models have been calibrated using historical data from the torrent. Accurate representation of the channel and fan topography is especially important to achieve a good replication of the observed deposition pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Ayotte and O. Hungr, Calibration of a runout prediction model for debris-flows and avalanches, in: Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proc. 2nd International DFHM Conference, eds. G.F. Wieczorek and N.D. Naeser (2000) (Taipei, Taiwan, 2000) pp. 505–514.

  2. P. Brufau, P. Garcia-Navarro, P. Ghilardi, L. Natale and F. Savi, 1D mathematical modelling of debris flow, J. Hydraul. Res. 38(6) (2000) 435–446.

    Article  Google Scholar 

  3. H. Chen and C.F. Lee, A dynamic model for rainfall-induced landslides on natural slopes, Geomorphology 51(4) (2003) 269–288.

    Article  MathSciNet  Google Scholar 

  4. M.H. Chuang, T.J. Chang, M.H. Hsu and M.L. Lin, An analysis of debris-flow transport in tributaries of Chen-Yo-Lan Creek, Taiwan, in: Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proceedings 2nd International DFHM Conference, eds. G.F. Wieczorek and N.D. Naeser (2000) (Taipei, Taiwan, 2000) pp. 515–519.

  5. P. Coussot, Steady, laminar flow of concentrated mud suspensions in open channel, J. Hydraul. Res. 32(4) (1994) 535–559.

    Google Scholar 

  6. P. Coussot, D. Laigle, M. Arattano, A. Deganutti and L. Marchi, Direct determination of rheological characteristics of debris flow, J. Hydraul. Eng. 124(8) (1998) 865–868.

    Article  Google Scholar 

  7. G.B. Crosta, H. Chen and C.F. Lee, Replay of the 1987 Val Pola Landslide, Italian Alps, Geomorphology 60(1–2) (2004) 127–146.

    Article  Google Scholar 

  8. R.P. Denlinger and R.M. Iverson, Flow of variably fluidized granular masses across three-dimensional terrain. 2. Numerical predictions and experimental tests, J. Geophys. Res. 106(B1) (2001) 537–552.

    Article  Google Scholar 

  9. FLO-2D, Users' Manual, Version 99.2 (FLO Engineering Inc., Nutrioso, Arizona, USA, September 1999).

  10. L. Fraccarollo and M. Papa, Numerical simulation of real debris-flow events, Phys. Chem. Earth, Part B 25(9) (2000) 757–763.

    Google Scholar 

  11. R. García, J.L. López M. Noya, M.E. Bello, M.T. Bello, N. González, G. Paredes, M.I. Vivas and J.S. O'Brien, Hazard mapping for debris flow events in the alluvial fans of northern Venezuela, in: Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proc. of 3rd International DFHM Conference, eds. D. Rickenmann and C.L. Chen (2003) (Davos, Switzerland, 2003) pp. 589–599.

  12. P. Ghilardi, L. Natale and F. Savi, Debris-flow propagation on urbanized alluvial fans, in: Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proc. 2nd International DFHM Conference, eds. G.F. Wieczorek and N.D. Naeser (2000) (Taipei, Taiwan, 2000) pp. 471–477.

  13. G. Han and D. Wang, Numerical modeling of Anhui debris flow, J. Hydraul. Eng. 122(5) (1996) 262–265.

    Article  Google Scholar 

  14. J. Hübl and H. Steinwendtner, Zweidimensionale Modellierung von Murgängen anhand zweier ausgewählter Beispiele in Österreich, in: Proc. Internationales Symposium Interpraevent Villach, Oesterreich, 2000, Band 3, pp. 179–190 (in German).

  15. J. Hübl and H. Steinwendtner, Estimation of rheological properties of viscous debris flows using a belt conveyor, Phys. Chem. Earth, Part B 25(9) (2000) 751–755.

    Google Scholar 

  16. O. Hungr, A model for the runout analysis of rapid flow slides, debris flows, and avalanches, Can. Geotech. J. 32 (1995) 610–623.

    Google Scholar 

  17. O. Hungr and S.G. Evans, A dynamic model for landslides with changing mass, in: Proc. Engineering geology and the environment, Athens, Greece (1997) pp. 719–724.

  18. M. Hürlimann, D. Rickenmann and C. Graf, Field and monitoring data of debris-flow events in the Swiss Alps, Can. Geotech. J. 40(1) (2003) 161–175.

    Article  Google Scholar 

  19. J. Imran, G. Parker, J. Locat and H. Lee, 1D Numerical model of muddy subaqueous and subaerial debris flows, J. Hydraul. Eng. 127(11) (2001) 959–967.

    Article  Google Scholar 

  20. R.M. Iverson, The physics of debris flows, Rev. Geophys. 35(3) (1997) 245–296.

    Article  Google Scholar 

  21. R.M. Iverson and R.P. Denlinger, Flow of variably fluidized granular masses across three-dimensional terrain. 1. Coulomb mixture theory, J. Geophys. Res. 106(B1) (2001) 537–552.

    Article  Google Scholar 

  22. M. Jin and D.L. Fread, 1D modeling of mud/debris unsteady flows, J. Hydraul. Eng. 125(8) (1999) 827–834.

    Article  Google Scholar 

  23. P.Y. Julien and Y. Lan, Rheology of hyperconcentrations, J. Hydraul. Eng. 117(3) (1991) 346–353.

    Article  Google Scholar 

  24. N.D. Katopodes, Two-dimensional surges and shocks in open channels, J. Hydraul. Eng. 110(6) (1984) 794–812.

    Article  Google Scholar 

  25. D. Laigle, A two-dimensional model for the study of debris-flow spreading on a torrent debris fan, in: Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proc. 1st International DFHM Conference, ed. C.L. Chen (1997) (San Francisco, CA, USA, 1997) pp. 123–132.

  26. D. Laigle and P. Coussot, Numerical Modeling of Mudflows, J. Hydraul. Eng. 123(7) (1997) 617–623.

    Article  Google Scholar 

  27. D. Laigle, A.-F. Hector, J. Hübl and D. Rickenmann, Comparison of numerical simulation of muddy debris flow spreading to records of real events, in: Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proc. 3rd International DFHM Conference, eds. D. Rickenmann and C.L. Chen (2003) (Davos, Switzerland, 2003) pp. 635–646.

  28. G. Lorenzini and N. Mazza, Debris Flow: Phenomenology and Rheological Modelling (WIT Press, Southampton, UK, 2004) 202 pp.

    Google Scholar 

  29. J.-P. Malet, O. Maquaire, J. Locat and A. Remaître, Assessing debris flow hazards associated with slow moving landslides: methodology and numerical analyses, Landslides 1(1) (2004) 83–90. DOI: 10.1007/s10346-003-0005-x.

    Article  Google Scholar 

  30. B.W. McArdell, B. Zanuttigh, A. Lamberti and D. Rickenmann, Systematic comparison of debris flow laws at the Illgraben torrent, Switzerland, in: Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proc. 3rd International DFHM Conference, eds. D. Rickenmann and C.L. Chen (2003) (Davos, Switzerland, 2003) pp. 647–657.

  31. D. Naef, D. Rickenmann, P. Rutschmann and B.W. McArdell, Comparison of friction relations for debris flows using a one dimensional finite element simulation model, Natural Hazards and Earth System Sciences (in press).

  32. H. Nakagawa and T. Takahashi, Estimation of a debris flow hydrograph and hazard area, in: Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proc. 1st International DFHM Conference, ed. C.L. Chen (1997) (San Francisco, CA, USA, 1997) pp. 64–73.

  33. H. Nakagawa, T. Takahashi and Y. Satofuka, A debris-flow disaster on the fan of the Harihara River, Japan, in: Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proc. 2nd International DFHM Conference, eds. G.F. Wieczorek and N.D. Naeser (2000) (Taipei, Taiwan, 2000) pp. 193–201.

  34. J.S. O'Brien, P.Y. Julien and W.T. Fullerton, Two-dimensional water flood and mudflow simulation, J. Hydraul. Eng. 119(2) (1993) 244–261.

    Article  Google Scholar 

  35. P. Revellino, O. Hungr, F.M. Guadagno and S.G. Evans, Velocity and runout simulation of destructive debris flows and debris avalanches in pyroclastic deposits, Campania region, Italy, Environ. Geol. 45(3) (2004) 295–311.

    Article  Google Scholar 

  36. D. Rickenmann, Bedload transport capacity of slurry flows at steep slopes, in: Mitteilung der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich 103 (1990), 249 pp.

  37. D. Rickenmann, Empirical relationships for debris flows, Nat. Hazards 19 (1999) 47–77.

    Article  Google Scholar 

  38. D. Rickenmann, Runout prediction methods, in: Debris-Flow Hazards and Related Phenomena, eds. M. Jakob and O. Hungr (Praxis-Springer, 2005) pp. 263–282.

  39. D. Rickenmann and T. Koch, Comparison of debris flow modelling approaches, in: Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proc. 1st International DFHM Conference, ed. C.L. Chen (1997) (San Francisco, CA, USA, 1997) pp. 576–585.

  40. D. Rickenmann and D. Weber, Flow resistance of natural and experimental debris flows in torrent channels, in Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proc. 2nd International DFHM Conference, eds. G.F. Wieczorek and N.D. Naeser (2000) (Taipei, Taiwan, 2000) pp. 245–254.

  41. D. Rickenmann and M. Zimmermann, The 1987 debris flows in Switzerland: documentation and analysis, Geomorphology 8(2–3) (1993) 175–189.

    Article  Google Scholar 

  42. D. Rickenmann, D. Laigle, A. Lamberti, B. Zanuttigh, A. Armanini, L. Fraccarollo, M. Giuliani, G. Rosati, B.W. McArdell, D. Naef, M. Swartz and C. Graf, Evaluation of existing numerical simulation models for debris flows, Report on work package 3 of the research project THARMIT of the European Union (2003), E.U. Contract EVG1-CT-1999-00012.

  43. P. Rutschmann, FE solver with 4D finite elements in space and time, in: Proc. VIII International Conference on Finite Elements in Fluids, Barcelona (1993) pp. 136–144.

  44. S.B. Savage and K. Hutter, The motion of a finite mass of granular material down a rough incline, J. Fluid Mech. 199 (1989) 177–215.

    Article  MATH  MathSciNet  Google Scholar 

  45. C.L. Shieh, C.D. Jan and Y.F. Tsai, A numerical simulation of debris flow and its applications, Nat. Hazards 13 (1996) 39–54.

    Article  Google Scholar 

  46. M. Swartz, B.W. McArdell and P. Bartelt, Interpretation of the August 2000 Schipfenbach debris flow event using numerical models, Turbulenzen in der Geomorphologie, Mitteilung der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, 184 (2004) pp. 51–60.

  47. T. Takahashi, Debris Flow (IAHR Monograph Series, Balkema, Rotterdam, The Netherlands, 1991), 165 pp.

  48. T. Takahashi, H. Nakagawa, T. Harada and Y. Yamashiki, Routing debris flows with particle segregation, J. Hydraul. Eng. 118(11) (1992) 1490–1507.

    Article  Google Scholar 

  49. B. Zanuttigh and A. Lamberti, Numerical modelling of debris surges based on shallow-water and homogeneous material approximations, J. Hydraul. Res. 42(4) (2004) 376–389.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Rickenmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rickenmann, D., Laigle, D., McArdell, B.W. et al. Comparison of 2D debris-flow simulation models with field events. Comput Geosci 10, 241–264 (2006). https://doi.org/10.1007/s10596-005-9021-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-005-9021-3

Keywords

Navigation