Skip to main content
Log in

Geometric modelling and object-oriented software concepts applied to a heterogeneous fractured network from the Grimsel rock laboratory

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Discrete fracture network simulations are computationally intensive and usually time-consuming to construct and configure. This paper presents a case study with techniques for building a 3D finite element model of an inhomogeneous fracture network for modelling flow and tracer transport, combining deterministic and stochastic information on fracture aperture distributions. The complex intersected fractures represent a challenge for geometrical model design, mesh quality requirements and property allocations. For the integrated and holistic modelling approach, including the application of numerical and analytical simulation techniques, new object-oriented concepts in software engineering are implemented to ensure a resourceful and practicable software environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acuna, J.A., Yortsos, Y.C.: Application of fractal geometry to the study of networks of fractures and their pressure transient. Water Resour. Res. 31(3), 527–540 (1995)

    Article  Google Scholar 

  2. Alexander, W.R., Ota, K., Frieg, B.: The Nagra-JNC in situ study of safety relevant radionuclide retardation in fractured crystalline rock. Nagra Technical Report 00-06. Nagra, Wettingen, Switzerland (2003)

  3. Baraka-Lokmane, S., Liedl, R., Teutsch, G.: Comparison of measured and modelled hydraulic conductivities of fractured sandstone cores. Pure Appl. Geophys. 160, 909–927 (2003)

    Article  Google Scholar 

  4. Berkowitz, B., Scher, H.: Anomalous transport in random fracture networks. Phys. Rev. Lett. 79, 4038–4041 (1997)

    Article  Google Scholar 

  5. Bern, M., Epstein, D.: Mesh Generation and Optimal Triangulation. Report CSL 92-1, Xerox Corporation, Palo Alto Research Center, Palo Alto, CA, 94304 (1992)

  6. Berzins, M.: Solution-based mesh quality indicators for triangular and tetrahedral meshes. Int. J. Comput. Geom. Appl. 10(3), 333–346 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bowyer, A.: Computing Dirichlet tessellations. Comput. J. 24(2), 162–166 (1981)

    Article  MathSciNet  Google Scholar 

  8. Brown, S.R., Scholz, C.H.: Broad bandwidth study of the topography of natural rock surfaces. JGR, J. Geophys. Res. B 90(14), 12.575–12.582 (1985)

    Google Scholar 

  9. Cacas, M.C., Ledoux, E., De Marsily, G., Tillie, B., Barbreau, A., Durand, E., Feuga, B., Peaudecerf, P.: Modeling fracture flow with a stochastic discrete fracture network: calibration and validation 1. The flow model. Water Resour. Res. 26, 479–489 (1990)

    Article  Google Scholar 

  10. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Oxford University Press Oxford, UK (1959)

    Google Scholar 

  11. Chen, C.: Integrating GIS methods for the analysis of geosystems. PhD thesis, Center for Applied Geoscience, University of Tübingen (2006)

  12. Cvetkovic, V., Painter, S., Outters, N., Selroos, J.O.: Stochastic simulation of radionuclide migration in discretely fractured rock near the Äspö Hard Rock Laboratory. Water Resour. Res. 40 (2004)

  13. de Dreuzy, J-R., Davy, P., Bour, O.: Hydraulic properties of two dimensional random fracture networks following a power law length distribution, 2. Permeability of networks based on lognormal distribution of apertures. Water Resour. Res. 37(8), 2079–2095 (2001)

    Article  Google Scholar 

  14. de Dreuzy, J.-R., Darcel, C., Davy, P., Bour, O.: Influence of spatial correlation of fracture centers on the permeability of two-dimensional fracture networks following a power law length-distribution. Water Resour. Res. 40 (2004)

  15. Dershowitz, W., Lee, G., Geier, J., La Pointe, P.: FracMan Interactive Discrete Feature Data Analysis Geometric Modelling and Exploration – User documentation (1995)

  16. Dershowitz, W., Fidelibus, C.: Derivation of equivalent pipe network analogues for three-dimensional discrete fracture networks by the boundary element method. Water Resour. Res. 35, 2685–2692 (1999)

    Article  Google Scholar 

  17. Fisher, M.K., Wright, C.A., Davidson, B.M., Goodwin, A.K., Fielder, E.O., Buckler, W.S., Steinsberger, N.P.: Integrating fracture-mapping technologies to improve stimulations in the Barnett Shale. SPE Prod. Facil. 85–93 (2005)

  18. Freeze, R.A., Cherry, J.A.: Groundwater. Prentice-Hall Englewood Cliffs, NJ (1979)

    Google Scholar 

  19. Glover, P.W.J., Matsuki, K., Hikima, R., Hayashi, K.: Characterising rock fractures using synthetic fractal analogues. Geotherm. Sci. Technol. 6 (1999)

  20. GMSH website: http://www.geuz.org/gmsh/.

  21. Grathwohl, P.: Diffusion in natural porous media: Contaminant Transport, Sorption/Desorption and Dissolution Kinetics. Kluwer Academic Publishers (2003)

  22. Häfner, F., Sames, D., Voigt, H.-D.: Wärme- und Stofftransport – Mathematische Methoden. Springer, Berlin Heidelberg New York (1992)

    Google Scholar 

  23. Helmig, R., Braun, C., Manthey, S.: Upscaling of two-phase flow processes in heterogeneous porous media: determination of constitutive relationships. IAHS–AISH Publ. 277, 28–36 (2002)

    Google Scholar 

  24. Istok, J.: Groundwater Modeling by the Finite Element Method. Water Resources Monograph. American Geophysical Union, Washington, DC (1989)

    Google Scholar 

  25. Kalbacher, T., Wang, W., McDermott, Ch., Kolditz, O., Taniguchi, T.: Development and application of a CAD interface for fractured rock. Environ. Geol. 47, 1017–1027 (2005)

    Article  Google Scholar 

  26. Kolditz, O.: Computational Methods in Environmental Fluid Mechanics. ISBN 3-540-42895-x. Berlin: Springer-Verlag, ss378 (2002).

    Google Scholar 

  27. Kolditz, O., Bauer, S.: A process-orientated approach to compute multi-field problems in porous media. Int. J. Hydroinf. 6, 225–244 (2004)

    Google Scholar 

  28. Kolditz, O., Beinhorn, M., de Jonge, J., Xie, M., Kalbacher, T., Bauer, S.,Wang, W., Bauer, S., McDermott, C., Chen, C., Beyer, C., Gronewold, J., Kemmler, D., Legeida, D., Walsh, R., Du, Y.: GeoSys/RockFlow, open source software design. Technical Report, GeoSys-Preprint [2004-25] http://www.uni-tuebingen.de/zag/geohydrology. GeoSysResearch, Center for Applied Geosciences, University of Tübingen (2004)

  29. Kosakowski, G.: Modellierung von Strömungs- und Transportprozessen in geklüfteten Medien: Vom natürlichen Kluftsystem zum numerischen Gitternetzwerk. VDI Fortschritt-Berichte 7(304) (1996)

  30. Kosakowski, G., Kasper, H., Taniguchi, T., Kolditz, O., Zielke, W.: Analysis of groundwater flow and transport in fractured rock – geometric complexity of numerical modelling. Z. Angew. Geol. 43(2), 81–84 (1997)

    Google Scholar 

  31. Kosakowski, G., Berkowitz, B., Scher, H.: Analysis of field observations of tracer transport in a fractured till. J. Contam. Hydrol. 47, 29–51 (2001)

    Article  Google Scholar 

  32. Lauwerier, H.A.: The transport of heat in an oil layer caused by the injection of hot fluid. Appl. Sci. Res. A5, 145–150 (1955)

    MathSciNet  Google Scholar 

  33. Louis, C.: Strömungsvorgänge in klüftigen Medien und ihre Wirkung aus die Standsicherheit von Bauwerken und Böschungen im Fels. Dissertation thesis, Universität Karlsruhe, Karlsruhe (1967)

  34. Lunati, I., Kinzelbach, W., Sørensen, I.: Effects of pore volume–transmissivity correlation on transport phenomena. J. Contam. Hydrol. 67, 195–217 (2003)

    Article  Google Scholar 

  35. MAFIC (http://fracman.golder.com/software/mafic.asp).

  36. Maloszewski, P., Zuber, A.: Tracer experiments in fractured rocks: matrix diffusion and the validity of models. Water Resour. Res. 29, 2723–2735 (1993)

    Article  Google Scholar 

  37. Maryška, J., Severýn, O., Vohralík, M.: Numerical simulation of fracture flow with a mixed-hybrid FEM stochastic discrete fracture network model. Comput. Geosci. 8, 217–234 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. McDermott, C.I., Kolditz, O.: Geomechanical model for fracture deformation under hydraulic, mechanical and thermal loads. Hydrogeol. J., Springer-Verlag, ISSN: 1431-2174 (Paper) 1435-0157 (Online) Doi: http://dx.doi.org/10.1007/s10040-005-0455-4 (2005)

  39. McDermott, C.I., Lodemann, M., Ghergut, I., Tenzer, H., Sauter, M., Kolditz, O.: Investigation of coupled hydraulic–geomechanical processes at the KTB site: pressure dependent characteristics of a long term pump test and elastic interpretation using a geomechanical facies model. Geofluids 6, 1–15 (2006)

    Article  Google Scholar 

  40. Mettier, R., Kosakowski, G., Kolditz, O.: Influence of small scale heterogeneities on contaminant transport in fractured crystalline rock, Ground Water, submitted (2006)

  41. Moreno, L., Tsang, Y.W., Tsang, C.F., Hale, F.V., Neretnieks, I.: Flow and tracer transport in a single fracture – a stochastic-model and its relation to some field observations. Water Resour. Res. 24(12), 2033–2048 (1988)

    Google Scholar 

  42. Mourzenko, V.V., Thovert, J.-F., Adler, P.M.: Macroscopic permeability of three-dimensional networks with power-law size distribution. Phys. Rev. E 69 (2004)

  43. National Research Council: Rock Fractures and Fluid Flow – Contemporary Understanding and Applications. Washington, DC: National Academy, 1996, ISBN:0-309-04996-2 (1996)

  44. Neretnieks, I.: A Note on fracture flow dispersion mechanisms in the ground. Water Resour. Res. 19(2), 364–370 (1983)

    Google Scholar 

  45. Oron, A.P., Berkowitz, B.: Flow in rock fractures: the local cubic law assumption reexamined. Water Resour. Res. 34, 2811–2825 (1998)

    Article  Google Scholar 

  46. Pebesma, E.J., Wesseling, C.G.: Gstat: a program for geostatistical modelling, prediction and simulation. Comput. Geosci. 24(1), 17-31 (1998) http://www.gstat.org

  47. Peratta, A., Popov, V.: A new scheme for numerical modelling of flow and transport processes in 3D fractured porous media. Adv. Water Resour. 29, 42–61 (2005)

    Article  Google Scholar 

  48. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, http://www.R-project.org (2005)

  49. Shewchuk, J.R.: Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In: Ming, C., Manocha, L., Manocha, D.(eds.) Applied Computational Geometry: Towards Geometric Engineering, vol. 1148 of Lecture Notes in Computer Science, pp. 203–222. Springer, Berlin Heidelberg New York (1996)

  50. Tsang, C.F.: Coupled hydromechanical–thermochemical processes in rock fractures. Rev. Geophys. 29(4), 537–552 (1991)

    Google Scholar 

  51. Tsang, Y.W., Tsang, C.F.: Channel model of flow through fractured media. Water Resour. Res. 23(3), 467–479 (1987)

    MathSciNet  Google Scholar 

  52. Wang, J.S.Y., Narasimhan, T.N., Scholz, C.H.: Aperture correlation of a fractal fracture. J. Geophys. Res. 93(B3), 2216–2224 (1988)

    Article  Google Scholar 

  53. Wang, W., Kolditz, O.: Object-oriented finite element analysis of thermo-hydro-mechanical (THM) problems in porous media. Int. J. Numer. Methods Eng. (accepted) (2005)

  54. Watson, D.F.: Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes. Comput. J. 24(2), 167–172 (1981)

    Article  MathSciNet  Google Scholar 

  55. Witherspoon, P.A., Wang, J.S.Y., Iwai, K., Gale, J.E.: Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour. Res. 16(6), 1016–1024 (1980)

    Google Scholar 

  56. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, 1. Butterworth-Heinemann, 752 pp (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kalbacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalbacher, T., Mettier, R., McDermott, C. et al. Geometric modelling and object-oriented software concepts applied to a heterogeneous fractured network from the Grimsel rock laboratory. Comput Geosci 11, 9–26 (2007). https://doi.org/10.1007/s10596-006-9032-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-006-9032-8

Keywords

Navigation