Skip to main content
Log in

A computational method for approximating a Darcy–Stokes system governing a vuggy porous medium

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We develop and analyze a mixed finite element method for the solution of an elliptic system modeling a porous medium with large cavities, called vugs. It consists of a second-order elliptic (i.e., Darcy) equation on part of the domain coupled to a Stokes equation on the rest of the domain, and a slip boundary condition (due to Beavers–Joseph–Saffman) on the interface between them. The tangential velocity is not continuous on the interface. We consider a 2-D vuggy porous medium with many small cavities throughout its extent, so the interface is not isolated. We use a certain conforming Stokes element on rectangles, slightly modified near the interface to account for the tangential discontinuity. This gives a mixed finite element method for the entire Darcy–Stokes system with a regular sparsity pattern that is easy to implement, independent of the vug geometry, as long as it aligns with the grid. We prove optimal global first-order L 2 convergence of the velocity and pressure, as well as the velocity gradient in the Stokes domain. Numerical results verify these rates of convergence and even suggest somewhat better convergence in certain situations. Finally, we present a lower dimensional space that uses Raviart–Thomas elements in the Darcy domain and uses our new modified elements near the interface in transition to the Stokes elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbogast, T., Brunson, D.S., Bryant, S.L., Jennings, J.W.: A preliminary computational investigation of a macro-model for vuggy porous media. In: Miller, C.T. et al. (eds.) Computational Methods in Water Resources XV. Elsevier, New York (2004)

    Google Scholar 

  2. Arbogast, T., Lehr, H.L.: Homogenization of a Darcy-Stokes system modeling vuggy porous media. Comput. Geosci. 10, 291–302 (2006)

    Article  MathSciNet  Google Scholar 

  3. Arbogast, T., Wheeler, M.F.: A family of rectangular mixed elements with a continuous flux for second order elliptic problems. SIAM J. Numer. Anal. 42, 1914–1931 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arnold, D.N., Scott, L.R., Vogelius, M.: Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon. Ann. Sc. Norm. Super. Pisa Cl. Sci.-Ser. IV XV, 169–192 (1988)

    MathSciNet  Google Scholar 

  5. Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  6. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structure. North-Holland, Amsterdam (1978)

    Google Scholar 

  7. Bramble, J.H., Hilbert, S.R.: Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7, 112–124 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bramble, J.H., Pasciak, J.E.: A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems. Math. Comput. 50, 1–17 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bramble, J.H., Pasciak, J.E., Vassilev, A.T.: Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal. 34, 1072–1092 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer-Verlag, Berlin Heidelberg New York (1994)

    MATH  Google Scholar 

  11. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin Heidelberg New York (1991)

    MATH  Google Scholar 

  12. Dupont, T., Scott, L.R.: Polynomial approximation of functions in Sobolev space. Math. Comput. 34, 441–463 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fortin, M.: Old and new finite elements for incompressible flows. Int. J. Numer. Methods Fluids 1, 347–364 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gartling, D.K., Hickox, C.E., Givler, R.C.: Simulation of coupled viscous and porous flow problems. Comput. Fluid Dyn. 7, 23–48 (1996)

    Article  MATH  Google Scholar 

  15. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin Heidelberg New York (1986)

    MATH  Google Scholar 

  16. Hornung, U. (ed.): Homogenization and Porous Media, Interdisciplinary Applied Mathematics Series. Springer-Verlag, Berlin Heidelberg New York (1997)

    Google Scholar 

  17. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functions. Springer-Verlag, Berlin Heidelberg New York (1994)

    Google Scholar 

  18. Jones, I.P.: Low Reynolds number flow past a porous spherical shell. Proc. Camb. Philos. Soc. 73, 231–238 (1973)

    Article  MATH  Google Scholar 

  19. Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 2195–2218 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Raviart, R.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical Aspects of Finite Element Methods, No. 606 in Lecture Notes in Math, pp. 292–315. Springer-Verlag, Berlin Heidelberg New York (1977)

    Chapter  Google Scholar 

  21. Saffman, P.G.: On the boundary condition at the interface of a porous medium. Stud. Appl. Math. 1, 93–101 (1971)

    Google Scholar 

  22. Salinger, A.G., Aris, R., Derby, J.J.: Finite element formulations for large-scale, coupled flows in adjacent porous and open fluid domains. Int. J. Numer. Methods Fluids 18, 1185–1209 (1994)

    Article  MATH  Google Scholar 

  23. Sanchez-Palencia, E.: Non-homogeneous Media and Vibration Theory. no. 127 in Lecture Notes in Physics. Springer-Verlag, Berlin Heidelberg New York (1980)

    Google Scholar 

  24. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Arbogast.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arbogast, T., Brunson, D.S. A computational method for approximating a Darcy–Stokes system governing a vuggy porous medium. Comput Geosci 11, 207–218 (2007). https://doi.org/10.1007/s10596-007-9043-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-007-9043-0

Keywords

Navigation