Skip to main content
Log in

Hybrid analytical and finite element numerical modeling of mass and heat transport in fractured rocks with matrix diffusion

  • Original paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Quantification of mass and heat transport in fractured porous rocks is important to areas such as contaminant transport, storage and release in fractured rock aquifers, the migration and sorption of radioactive nuclides from waste depositories, and the characterization of engineered heat exchangers in the context of enhanced geothermal systems. The large difference between flow and transport characteristics in fractures and in the surrounding matrix rock means models of such systems are forced to make a number of simplifications. Analytical approaches assume a homogeneous system, numerical approaches address the scale at which a process is operating, but may lose individual important processes due to averaging considerations. Numerical stability criteria limit the contrasts possible in defining material properties. Here, a hybrid analytical–numerical method for transport modeling in fractured media is presented. This method combines a numerical model for flow and transport in a heterogeneous fracture and an analytical solution for matrix diffusion. By linking the two types of model, the advantages of both methods can be combined. The methodology as well as the mathematical background are developed, verified for simple geometries, and applied to fractures representing experimental field conditions in the Grimsel rock laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jacob, A.: Matrix diffusion for performance assessment—experimental evidence, modeling assumptions and open issues. Paul Scherrer Institute (2004)

  2. Min, K., Rutqvist, J., Tsang, C.F., Jing, L.: Stress-dependent permeability of fractured rock masses: a numerical study. Int. J. Rock Mech. Min. Sci. 41, 1191–1210 (2004). doi:10.1016/j.ijrmms.2004.05.005

    Article  Google Scholar 

  3. Taylor, L.W., Polard, D.D., Aydin, A.: Fluid flow in discrete joint sets: field observations and numerical simulations. J. Geophys. Res. 104(B12), 28983–29006 (1999). doi:10.1029/1999JB900179

    Article  Google Scholar 

  4. Chen, C.Y., Horne, R.N., Fourar, M.: Experimental study of liquid–gas flow structure effects on relative permeabilities in a fracture. Water Resour. Res. 40(8), W083011–W0830115 (2004). doi:10.1029/2004WR003026

    Article  Google Scholar 

  5. Zhang, Y., Liu, H., Zhou, Q., Finsterle, S.: Effects of diffusive property heterogeneity on effective matrix diffusion coefficient for fractured rock. Water Resour. Res. 42, 1–8 (2006)

    Google Scholar 

  6. Park, C.-H., Beyer, C., Bauer, S., Kolditz, O.: A study of preferential flow in heterogeneous media using random walk particle tracking. Geosciences J. 12(3), 285–297 (2008). doi:10.1007/s12303-008-0029-2

    Article  Google Scholar 

  7. Berkowitz, B.: Characterizing flow and transport in fractured geological media: a review. Adv. Water Resour. 25, 861–884 (2002). doi:10.1016/S0309-1708(02)00042-8

    Article  Google Scholar 

  8. Sanchez-Vila, X., Carrera, J.: On the striking similarity between the moments of breakthrough curves for a heterogeneous medium and a homogeneous medium with a matrix diffusion term. J. Hydrol. (Amst.) 294, 164–175 (2004). doi:10.1016/j.jhydrol.2003.12.046

    Article  Google Scholar 

  9. Carrera, J., Sánchez-Vila, X., Benet, I., Medina, A., Galarza, G., Guimerà, J.: On matrix diffusion: formulations, solution methods and qualitative effects. Hydrogeol. J. 6, 178–190 (1998). doi:10.1007/s100400050143

    Article  Google Scholar 

  10. Kosakowski, G.: Anomalous transport of colloids and solutes in a shear zone. J. Contam. Hydrol. 72, 23–46 (2004). doi:10.1016/j.jconhyd.2003.10.005

    Article  Google Scholar 

  11. Grisak, G.E., Pickens, J.F.: An analytical solution for solute transport through fractured media with matrix diffusion. J. Hydrol. (Amst.) 52, 47–57 (1981). doi:10.1016/0022-1694(81)90095-0

    Article  Google Scholar 

  12. Tang, D.H., Frind, E.O., Sudicky, E.A.: Contaminant transport in fractured porous media; analytical solution for a single fracture. Water Resour. Res. 17(3), 555–564 (1981). doi:10.1029/WR017i003p00555

    Article  Google Scholar 

  13. Sudicky, E.A., Frind, E.O.: Contaminant transport in fractured porous media—analytical solutions for a system of parallel fractures. Water Resour. Res. 18(6), 1634–1642 (1982). doi:10.1029/WR018i006p01634

    Article  Google Scholar 

  14. Barker, J.A.: Laplace transform solutions for solute transport in fissured aquifers. Adv. Water Resour. 5(2), 98–104 (1982). doi:10.1016/0309-1708(82)90051-3

    Article  MathSciNet  Google Scholar 

  15. Tidwell, V.C., Meigs, L.C., Christian-Frear, T., Boney, C.M.: Effects of spatially heterogeneous porosity on matrix diffusion as investigated by X-ray absorption imaging. J. Contam. Hydrol. 42, 285–302 (2000). doi:10.1016/S0169-7722(99)00087-X

    Article  Google Scholar 

  16. Neuman, S.P.: Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeol. J. 13(1), 124–147 (2004). doi:10.1007/s10040-004-0397-2

    Article  Google Scholar 

  17. Kolditz, O., Clauser, C.: Numerical simulation of flow and heat transfer in fractured crystalline rocks: application to the hot dry rock site in Rosemanowes (U.K.). Geothermics 27(1), 1–23 (1998). doi:10.1016/S0375-6505(97)00021-7

    Article  Google Scholar 

  18. Kaiser, R., Rother, T., Kolditz, O., Zielke, W.: Automatic grid adaptation for modeling coupled flow and transport processes in fractured aquifers, Computational methods in water resources—Volume 1—Computational methods for subsurface flow and transport, 279–283 (2000)

  19. Haefner, F., Boy, S.: Fast transport simulation with an adaptive grid refinement. Ground Water 41(2), 273–279 (2003). doi:10.1111/j.1745-6584.2003.tb02590.x

    Article  Google Scholar 

  20. Pruess, K., Narasimhan, T.N.: A practical method for modeling fluid and heat flow in fractured porous media. Soc. Pet. Eng. J. 25(1), 14–26 (1985), February

    Google Scholar 

  21. Pruess, K.: Brief guide to the MINC-method for modeling flow and transport in fractured Media, Report LBL-32195, Earth Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (1992)

  22. Zimmerman, R.W., Chen, G., Bodvarsson, G.S.: A dual-porosity reservoir model with an improved coupling term, Proceedings Seventeenth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 29–31 (1992)

  23. Teutsch, G.: Grundwassermodelle im Karst: Praktische Ansätze am Beispiel zweier Einzugsgebiete in tiefen und seichten Malmkarst der Schwäbischen Alb, PhD thesis, Universität Tübingen (1988)

  24. Birkholzer, J.: Numerische Untersuchungen zur Mehrkontinuumsmodellierung von Stofftransportvorgängen in Kluftgrundwasserleitern. PhD thesis, Mitteilungen des Instituts für Wasserbau und Wasserwirtschaft, Band 93, RWTH Aachen (1994)

  25. Barten, W., Robinson, P.C.: Contaminant transport in fracture networks with heterogeneous rock matrices: The PICNIC code, PSI Report Nr. 01–02, February 2001, ISSN 1019-0643 (2001)

  26. Kolditz, O., Bauer, S.: A process-orientated approach to compute multi-field problems in porous media. Int. J. Hydroinformatics 6, 225–244 (2004)

    Google Scholar 

  27. Kalbacher, T., Mettier, R., McDermott, C., Wang, W., Kosakowski, G., Taniguchi, T., Kolditz, O.: Geometric modelling and object-oriented software concepts applied to a heterogeneous fractured network from the Grimsel rock laboratory. Comput. Geosci. 11(1), 9–26, (2007), March 2007

    Article  MATH  Google Scholar 

  28. Huyakorn, P.S., Pinder, G.F.: Computational Methods in Subsurface Flow. Academic, New York (1983)

    MATH  Google Scholar 

  29. Freeze, R.A., Cherry, J.A.: Groundwater. Prentice Hall, Englewood Cliffs (1979)

    Google Scholar 

  30. Istok, J.: Groundwater Modeling by the Finite Element Method. Water Resources Monograph. American Geophysical Union, 2000 Florida Avenue, NW, Washington, DC 20009 (1989)

  31. Lewis, R.W., Schrefler, B.A.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. Wiley, Chichester (1998)

    MATH  Google Scholar 

  32. Witherspoon, P.A., Wang, J.S.Y., Iwai, K., Gale, J.E.: Validity of cubic law for fluid flow in deformable rock fracture. Water Resour. Res. 16(6), 1016–1024 (1980). doi:10.1029/WR016i006p01016

    Article  Google Scholar 

  33. Dijk, P.E., Berkowitz, B.: Three-dimensional flow measurements in rock fractures. Water Resour. Res. 35(12), 3955–3959 (1999). doi:10.1029/1999WR900200

    Article  Google Scholar 

  34. Konzuk, J.S., Kueper, B.H.: Evaluation of cubic law based models describing single-phase flow through a rough-walled fracture. Water Resour. Res. 40(2), W02402 (2004). doi:10.1029/2003WR002356

    Article  Google Scholar 

  35. Nicholl, M.J., Rajaram, H., Glass, R.J., Detwiler, R.: Saturated flow in a single fracture: evaluation of the Reynolds equation in measured aperture fields. Water Resour. Res. 35(11), 3361–3374 (1999). doi:10.1029/1999WR900241

    Article  Google Scholar 

  36. Mettier, R., Kosakowski, G., Kolditz, O.: Influence of small-scale heterogeneities on contaminant transport in fractured crystalline rock. Ground Water 44(5), 687–696 (2006)

    Google Scholar 

  37. Fetter, C.W.: Contaminant Hydrogeology. Prentice-Hall, Upper Saddle River (1993)

    Google Scholar 

  38. Grathwohl, P.: Diffusion in Natural Porous Media: Contaminant Transport, Sorption/Desorption and Dissolution Kinetics. Kluwer, Dordrecht (1998)

    Google Scholar 

  39. Häfner, F., Sames, D., Voigt, H.-D.: Wärme- und Stofftransport - Mathematische Methoden. Springer, Berlin (1992)

    Google Scholar 

  40. Kleineidam, S., Ruegner, H., Grathwohl, P.: Impact of grain scale heterogeneity on slow sorbtion kinetics. Environ. Toxicol. Chem. 18(8), 1673–1678 (1999). doi:10.1897/1551-5028(1999)018<1673:IOGSHO>2.3.CO;2

    Article  Google Scholar 

  41. Kolditz, O.: Non-linear flow in fractured rock. Int J. Numer. Methods Fluid Heat Transp. 11(6), 547–576 (2001). doi:10.1108/EUM0000000005668

    Article  MATH  Google Scholar 

  42. Kosakowski, G., Smith, P.: Modeling the transport of solutes and colloids in the Grimsel Migration shear zone. PSI Report Nr. 05-03, Paul Scherrer Institut, Villigen, Switzerland, and Nagra Technical Report 04-01, Wettingen, Switzerland (2005)

  43. Walsh, R., McDermott, C., Kolditz, O.: Numerical modeling of stress–permeability coupling in rough fractures. J. Hydrogeology 16(4), 613–627 (2008). doi:10.1007/s10040-007-0254-1

    Article  Google Scholar 

  44. McDermott, C.I., Tarafder, S.A., Schüth, C.: Vacuum assisted removal of volatile to semi volatile organic contaminants from water using hollow fiber membrane contactors II: A hybrid numerical–analytical modeling approach. J. Membr. Sci. 292(1–2), 17–28 (2007). doi:10.1016/j.memsci.2007.01.009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher I. McDermott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDermott, C.I., Walsh, R., Mettier, R. et al. Hybrid analytical and finite element numerical modeling of mass and heat transport in fractured rocks with matrix diffusion. Comput Geosci 13, 349–361 (2009). https://doi.org/10.1007/s10596-008-9123-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-008-9123-9

Keywords

Navigation