Skip to main content
Log in

Solution of the MoMaS reactive transport benchmark with MIN3P—model formulation and simulation results

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

This paper summarizes the governing equations as implemented in the MIN3P multicomponent flow and reactive transport code (Mayer et al., Water Resour Res 38:1174, 2002) and introduces the equations in discretized form. Linearization and solution methods are presented including adaptive time stepping and update modification schemes. Code-specific details for the implementation of the GdR MoMaS benchmark simulations (Carrayrou et al., Comput Geosci, 2009) are presented. The standard version of the MIN3P code was used to solve the Easy, Medium, and Hard Test Cases, in one and two spatial dimensions, for both advection- and diffusion-dominated conditions. An analysis of the sensitivity of the solution in relation to spatial and temporal discretization parameters is provided for the Easy Test Case, selected results are presented for the Medium and Hard Test Cases, and the performance of the code as a function of discretization parameters is evaluated for all test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amos, R.T., Mayer, K.U.: Investigating the role of gas bubble formation and entrapment in contaminated aquifers: reactive transport modeling. J. Contam. Hydrol. 87, 123–154 (2006)

    Article  Google Scholar 

  2. Bain, J.G., Mayer, K.U., Molson, J.W.H., Blowes, D.W., Frind, E.O., Kahnt, R., Jenk, U.: Assessment of the suitability of reactive transport modelling for the evaluation of mine closure options. J. Contam. Hydrol. 52, 109–135 (2001)

    Article  Google Scholar 

  3. Brookfield, A., Blowes, D.W., Mayer, K.U.: Integration of field measurements and reactive transport modelling to evaluate contaminant transport at a sulfide mine tailings impoundment. J. Contam. Hydrol. 88, 1–22 (2006)

    Article  Google Scholar 

  4. Carrayrou, J., et al.: Reactive transport benchmark of MoMas. Comput. Geosci. (2009). doi:10.1007/s10596-009-9157-7

    Google Scholar 

  5. Carrayrou, J., Hoffmann, J., Knabner, P., Kräutle, S., Dedieuleveult, C., Erhel, J., van der Lee, J., Lagneau, V., Kern, M., Amir, L., Mayer, K.U., MacQuarrie, K.T.B.: A synthesis of the MoMaS reactive transport results. Comput. Geosci. (2009, submitted)

  6. De Windt, L., Burnol, A., Montarnal, P., van der Lee, J.: Intercomparison of reactive transport models applied to UO2 oxidative dissolution of uranium migration. J. Contam. Hydrol. 61, 303–312 (2003)

    Article  Google Scholar 

  7. Essaid, H.I., Cozzarelli, I.M., Eganhouse, R.P., Herkelrath, W.N., Bekins, B.A., Delin, G.N.: Inverse modeling of BTEX dissolution and biodegradation at the Bemidji, MN crude-oil spill site. J. Contam. Hydrol. 67, 269–299 (2003)

    Article  Google Scholar 

  8. Forsyth, P.A., Unger, A.J.A., Sudicky, E.A.: Nonlinear iteration methods for nonequilibrium multiphase subsurface flow. Adv. Water Resour. 21, 433–449 (1998)

    Article  Google Scholar 

  9. Gerard, F., Mayer, K.U., Hodson, M.J., Ranger, J.: Modelling the biogeochemical cycle of silicon in soils: application to a temperate forest ecosystem. Geochim. Cosmochim. Acta 72, 741–758 (2008)

    Article  Google Scholar 

  10. Glassley, W.E., Simmons, A.M., Kercher, J.R.: Mineralogical heterogeneity in fractured, porous media and its representation in reactive transport models. Appl. Geochem. 17, 699–708 (2002)

    Article  Google Scholar 

  11. Hindmarsh, A.C., Petzold, L.R.: Algorithms and software for ordinary differential equations and differential/algebraic equations, Part I: Euler methods and error estimation. Comp. Physiol. 9, 34–41 (1995)

    Google Scholar 

  12. Holm, T.R.: Comment on “Computing the equilibrium composition of aqueous systems: an iterative solution at each step in Newton–Raphson”. Environ. Sci. Technol. 23, 1531–1532 (1989)

    Article  Google Scholar 

  13. Jurjovec, J., Blowes, D.W., Ptacek, C.J., Mayer, K.U.: Multicomponent reactive transport modelling of acid neutralization reactions in mill tailings. Water Resour. Res. 40, W11202 (2004). doi:10.1029/2003WR002233

    Article  Google Scholar 

  14. Kirkner, D.J., Reeves, H.: Multicomponent mass transport with homogeneous and heterogeneous chemical reactions: effect of the chemistry on the choice of the numerical algorithm 1. Theory. Water Resour. Res. 24, 1719–1729

  15. Lagneau, V., van der Lee, J.: HYTEC results of the MoMaS reactive transport benchmark. Comput. Geosci. (2009). doi:10.1007/s10596-009-9159-5

    Google Scholar 

  16. Lichtner, P.C.: The quasi stationary state approximation to coupled mass transport and fluid–rock interaction in a porous medium. Geochim. Cosmochim. Acta 52, 143–165 (1988)

    Article  Google Scholar 

  17. Lichtner, P.C.: Continuum formulation of multicomponent-multiphase reactive transport. Ch. 1 in Reactive transport in porous media. Rev. Min. 34, 1–81 (1996)

    Google Scholar 

  18. Leeming, G.J.S., Mayer, K.U., Simpson, R.B.: Effects of chemical reactions on iterative methods for implicit time stepping. Adv. Water Resour. 22, 333–347 (1998)

    Article  Google Scholar 

  19. MacQuarrie, K.T.B., Sudicky, E.A.: Multicomponent simulation of wastewater-derived nitrogen and carbon in shallow unconfined aquifers I. Model formulation and performance. J. Contam. Hydrol. 47, 53–84 (2001)

    Article  Google Scholar 

  20. Mayer, K.U.: A numerical model for reactive transport in variably-saturated porous media. Ph.D. thesis, Department of Earth Sciences, University of Waterloo, Waterloo, ON, Canada (1999)

  21. Mayer, K.U., Benner, S.G., Frind, E.O., Thornton, S.F., Lerner, D.L.: Reactive transport modeling of processes controlling the distribution and natural attenuation of phenolic compounds in a deep sandstone aquifer. J. Contam. Hydrol. 53, 341–368 (2001)

    Article  Google Scholar 

  22. Mayer, K.U., Frind, E.O., Blowes, D.W.: Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour. Res. 38, 1174 (2002). doi:10:1029/2001WR000862

    Article  Google Scholar 

  23. Mayer, K.U., Benner, S.G., Blowes, D.W.: Process-based reactive transport modeling of a permeable reactive barrier for the treatment of mine drainage. J. Contam. Hydrol. 85, 195–211 (2006)

    Article  Google Scholar 

  24. Miller, G.R., Rubin, Y., Mayer, K.U., Benito, P.H.: Modeling vadose zone processes during land application of food-processing waste water in California’s Central Valley. J. Environ. Qual. 37, S-43–S-57 (2008)

    Google Scholar 

  25. Molins, S., Mayer, K.U.: Coupling between geochemical reactions and multicomponent gas diffusion and advection—a reactive transport modeling study. Water Resour. Res. 43, W05435 (2007). doi:10.1029/2006WR005206

    Article  Google Scholar 

  26. Neuman, S.P.: Saturated–unsaturated see page by finite elements. J. Hydraul. Div. Am. Soc. Civ. Eng. 99(HY12), 2233–2250 (1973)

    Google Scholar 

  27. Nowack, B., Mayer, K.U., Oswald, S.E., Van-Beinum, W., Appelo, C.A.J., Jacques, D., Seuntjens, P., Gérard, F., Jaillard, B., Schnepf, A., Roose, T.: Verification and intercomparison of reactive transport codes to describe root-uptake. Plant Soil 285, 305–321 (2006)

    Article  Google Scholar 

  28. Parkhurst, D.L., Kipp, K.L., Engesgaard, P., Charlton, S.R.: PHAST—a program for simulating ground-water flow and multicomponent geochemical reactions. Limited documentation available at: http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phast/index.html (2002)

  29. Postma, D., Appelo, C.A.J.: Reduction of Mn-oxides by ferrous iron in a flow system: column experiment and reactive transport modeling. Geochim. Cosmochim. Acta 64, 1237–1247 (2000)

    Article  Google Scholar 

  30. Prommer, H., Barry, D.A., Davis, G.B.: Modelling of physical and reactive processes during biodegradation of a hydrocarbon plume under transient groundwater flow conditions. J. Contam. Hydrol. 59, 113–131 (2002)

    Article  Google Scholar 

  31. Prommer, H., Barry, D.A., Zheng, C.: MODFLOW/ MT3DMS-based reactive multicomponent transport modeling. Ground Water 41, 247–257 (2003)

    Article  Google Scholar 

  32. Pruess, K., García, J., Kovscek, T., Oldenburg, C., Rutqvist, J., Steefel, C., Xu, T.-F.: Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2. Energy 29, 1431–1444 (2004)

    Article  Google Scholar 

  33. Spiessl, S.M., MacQuarrie, K.T.B., Mayer, K.U.: Identification of key parameters controlling dissolved oxygen migration and attenuation in fractured crystalline rocks. J. Contam. Hydrol. 95, 141–153 (2008)

    Article  Google Scholar 

  34. Spycher, N.F., Sonnenthal, E.L., Apps, J.A.: Fluid flow and reactive transport around potential nuclear waste emplacement tunnels at Yucca Mountain, Nevada. J. Contam. Hydrol. 62, 653–673 (2003)

    Article  Google Scholar 

  35. Steefel, C.I., Lasaga, A.C.: A coupled model for transport of multiple chemical species and kinetic precipitation dissolution reactions with application to reactive flow in single-phase hydrothermal systems. Am. J. Sci. 294, 529–592 (1994)

    Google Scholar 

  36. Steefel, C.I., MacQuarrie, K.T.B.: Approaches to modeling of reactive transport in porous media. Ch. 2 in Reactive transport in porous media. Rev. Min. 34, 83–129 (1996)

    Google Scholar 

  37. Steefel, C.I., DePaolo, D.J., Lichtner, P.C.: Reactive transport modeling: an essential tool and a new research approach for the Earth sciences. Earth Planet. Sci. Lett. 240, 539–558 (2005)

    Article  Google Scholar 

  38. Unger, A.J.A., Forsyth, P.A., Sudicky, E.A.: Variable spatial and temporal weighting schemes for use in multi-phase compositional problems. Adv. Water Resour. 19, 1–27 (1996)

    Article  Google Scholar 

  39. Van der Lee, J., De Windt, L., Lagneau, V., Goblet, P.: Module-oriented modeling of reactive transport with HYTEC. Comp. Geosci. 29, 265–275 (2003)

    Article  Google Scholar 

  40. VanderKwaak, J.E., Forsyth, P.A., MacQuarrie, K.T.B., Sudicky, E.A.: WatSolv—Sparse Matrix Iterative Solver, User’s Guide for Version 2.16. University of Waterloo, Waterloo (1997)

  41. van Leer, B.: Towards the ultimate conservative scheme. II. Monotonicity and conservation combined in a second order scheme. J. Comp. Phys. 14, 361–370 (1974)

    Article  Google Scholar 

  42. Watson, I.A., Oswald, S.E., Mayer, K.U., Wu, Y., Banwart, S.A.: Modeling kinetic processes controlling hydrogen and acetate concentrations in an aquifer-derived microcosm. Environ. Sci. Technol. 37, 3910–3919 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ulrich Mayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, K.U., MacQuarrie, K.T.B. Solution of the MoMaS reactive transport benchmark with MIN3P—model formulation and simulation results. Comput Geosci 14, 405–419 (2010). https://doi.org/10.1007/s10596-009-9158-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-009-9158-6

Keywords

Navigation