Skip to main content
Log in

Spectral harmonic analysis and synthesis of Earth’s crust gravity field

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We developed and applied a novel numerical scheme for a gravimetric forward modelling of the Earth’s crustal density structures based entirely on methods for a spherical analysis and synthesis of the gravitational field. This numerical scheme utilises expressions for the gravitational potentials and their radial derivatives generated by the homogeneous or laterally varying mass density layers with a variable height/depth and thickness given in terms of spherical harmonics. We used these expressions to compute globally the complete crust-corrected Earth’s gravity field and its contribution generated by the Earth’s crust. The gravimetric forward modelling of large known mass density structures within the Earth’s crust is realised by using global models of the Earth’s gravity field (EGM2008), topography/bathymetry (DTM2006.0), continental ice-thickness (ICE-5G), and crustal density structures (CRUST2.0). The crust-corrected gravity field is obtained after modelling and subtracting the gravitational contribution of the Earth’s crust from the EGM2008 gravity data. These refined gravity data mainly comprise information on the Moho interface and mantle lithosphere. Numerical results also reveal that the gravitational contribution of the Earth’s crust varies globally from 1,843 to 12,010 mGal. This gravitational signal is strongly correlated with the crustal thickness with its maxima in mountainous regions (Himalayas, Tibetan Plateau and Andes) with the presence of large isostatic compensation. The corresponding minima over the open oceans are due to the thin and heavier oceanic crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arabelos, D., Mantzios, G., Tsoulis, D.: Moho depths in the Indian Ocean based on the inversion of satellite gravity data. In: Huen, W., Chen, Y.T. (eds.) Advances in Geosciences: Solid Earth, Ocean Science and Atmospheric Science, vol. 9, pp. 41–52. World Scientific (2007)

  2. Antonov, J.I., Seidov, D., Boyer, T.P., Locarnini, R.A., Mishonov, A.V., Garcia, H.E.: World ocean atlas 2009, vol. 2: salinity. In: Levitus, S. (ed.) NOAA Atlas NESDIS 69, pp. 184. US Government Printing Office, Washington (2010)

    Google Scholar 

  3. Artemjev, M.E., Kaban, M.K., Kucherinenko, V.A., Demjanov, G.V., Taranov, V.A.: Subcrustal density inhomogeneities of the Northern Euroasia as derived from the gravity data and isostatic models of the lithosphere. Tectonophysics 240, 248–280 (1994)

    Google Scholar 

  4. Bassin, C., Laske, G., Masters, G.: The current limits of resolution for surface wave tomography in North America. EOS, Trans AGU 81, F897 (2000)

    Google Scholar 

  5. Cutnell, J.D., Kenneth, W.J.: Physics, 3rd edn. Wiley, New York (1995)

    Google Scholar 

  6. Dziewonski, A.M., Anderson, D.L.: Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981)

    Article  Google Scholar 

  7. Eshagh, M., Sjöberg, L.E.: Impact of topographic and atmospheric masses over Iran on validation and inversion of GOCE gradiometric data. J. Earth Space Phys. 34(3), 15–30 (2008)

    Google Scholar 

  8. Eshagh, M., Sjöberg, L.E.: Atmospheric effect on satellite gravity gradiometry data. J. Geodyn. 47, 9–19 (2009)

    Article  Google Scholar 

  9. Eshagh, M., Bagherbandi, M., Sjöberg, L.E.: A combined global Moho model based on seismic and gravimetric data. Acta Geod. Geophys. Hung. 46(1), 25–38 (2011)

    Article  Google Scholar 

  10. Garcia, H.E., Locarnini, R.A., Boyer, T.P., Antonov, J.I.: World ocean atlas 2009, vol. 3: dissolved Oxygen, apparent oxygen utilization, and oxygen saturation. In: Levitus, S. (ed.) NOAA Atlas NESDIS 70, pp. 344. US Government Printing Office, Washington (2010a)

    Google Scholar 

  11. Garcia, H.E., Locarnini, R.A., Boyer, T.P., Antonov, J.I.: World ocean atlas 2009, vol. 4: nutrients (phosphate, nitrate, silicate). In: Levitus, S. (ed.) NOAA Atlas NESDIS 71, pp. 398. US Government Printing Office, Washington (2010b)

    Google Scholar 

  12. Gladkikh, V., Tenzer, R.: A mathematical model of the global ocean saltwater density distribution. Pure Appl. Geophys. (2011) (submitted)

  13. Gouretski, V.V., Koltermann, K.P.: Berichte des Bundesamtes für Seeschifffahrt und Hydrographie, vol. 35 (2004)

  14. Grafarend, E., Engels, J.: The gravitational field of topographic isostatic masses and the hypothesis of mass condensation. Surv. Geophys. 14, 495–524 (1993)

    Article  Google Scholar 

  15. Grafarend, E., Engels, J., Sorcik, P.: The gravitational field of topographic–isostatic masses and the hypothesis of mass condensation II—the topographic–isostatic geoid. Surv. Geophys. 17, 41–66 (1996)

    Article  Google Scholar 

  16. Heck, B.: On Helmert’s methods of condensation. J. Geod. 7, 155–170 (2003). doi:10.1007/s00190-003-0318-5

    Article  Google Scholar 

  17. Heiskanen, W.H., Moritz, H.: Physical Geodesy. San Francisco, Freeman (1967)

    Google Scholar 

  18. Hinze, W.J.: Bouguer reduction density, why 2.67? Geophysics 68(5), 1559–1560 (2003). doi:10.1190/1.1620629

    Article  Google Scholar 

  19. Johnson, D.R., Garcia, H.E., Boyer, T.P.: World ocean database 2009 tutorial. In: Levitus, S. (ed.) NODC Internal Report 21, pp. 18. NOAA Printing Office, Silver Spring (2009)

    Google Scholar 

  20. Kaban, M.K., Schwintzer, P., Tikhotsky, S.A.: Global isostatic gravity model of the Earth. Geophys. J. Int. 136, 519–536 (1999)

    Article  Google Scholar 

  21. Kaban, M.K., Schwintzer, P.: Oceanic upper mantle structure from experimental scaling of vs. and density at different depths. Geophys. J. Int. 147, 199–214 (2001)

    Google Scholar 

  22. Kaban, M.K., Schwintzer, P., Artemieva, I.M., Mooney, W.D.: Density of the continental roots: compositional and thermal contributions. Earth Planet. Sci. Lett. 209, 53–69 (2003)

    Article  Google Scholar 

  23. Kaban, M.K., Schwintzer, P., Reigber, Ch.: A new isostatic model of the lithosphere and gravity field. J. Geod. 78, 368–385 (2004). doi:10.1007/s00190-004-0401-6

    Article  Google Scholar 

  24. Locarnini, R.A., Mishonov, A.V., Antonov, J.I., Boyer, T.P., Garcia, H.E.: World ocean atlas 2009, vol. 1: temperature. In: Levitus, S. (ed.) NOAA Atlas NESDIS 68, pp. 184. US Government Printing Office, Washington (2010)

    Google Scholar 

  25. Makhloof, A.A.: The use of topographic–isostatic mass information in geodetic application. Dissertation D98, Institute of Geodesy and Geoinformation, Bonn (2007)

  26. Mooney, W.D., Laske, G., Masters, T.G.: CRUST 5.1: a global crustal model at 5° × 5°. J. Geophys. Res. 103B, 727–747 (1998)

    Article  Google Scholar 

  27. Moritz, H.: Advanced Physical Geodesy. Wichmann, Karlsruhe (1980)

    Google Scholar 

  28. Nahavandchi, H.: A new strategy for the atmospheric gravity effect in gravimetric geoid determination. J. Geod. 77, 823–828 (2004). doi:10.1007/s00190-003-0358-x

    Article  MATH  Google Scholar 

  29. Novák, P.: Evaluation of gravity data for the Stokes–Helmert solution to the geodetic boundary-value problem. Technical Report, 207, University New Brunswick, Fredericton (2000)

  30. Novák, P., Vaníèek, P., Martinec, Z., Veronneau, M.: Effects of the spherical terrain on gravity and the geoid. J. Geod. 75(9–10), 491–504 (2001). doi:10.1007/s001900100201

    MATH  Google Scholar 

  31. Novák, P., Grafarend, E.W.: The ellipsoidal representation of the topographical potential and its vertical gradient. J. Geod. 78(11–12), 691–706 (2005). doi:10.1007/s00190-005-0435-4

    Article  Google Scholar 

  32. Novák, P., Grafarend, E.W.: The effect of topographical and atmospheric masses on spaceborne gravimetric and gradiometric data. Stud. Geophys. Geod. 50(4), 549–582 (2006). doi:10.1007/s11200-006-0035-7

    Article  Google Scholar 

  33. Novák, P.: High resolution constituents of the Earth gravitational field. Surv. Geophys. 31(1), 1–21 (2010a)

    Article  Google Scholar 

  34. Novák, P.: Direct modeling of the gravitational field using harmonic series. Acta Geodynamica at Geomaterialia 157(1), 35–47 (2010b)

    Google Scholar 

  35. Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K.: An Earth gravitational model to degree 2160: EGM 2008. Presented at session G3: “GRACE science applications”, EGU Vienna (2008)

  36. Peltier, W.R.: Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Ann. Rev. Earth and Planet. Sci. 32, 111–149 (2004)

    Article  Google Scholar 

  37. Ramillien, G.: Gravity/magnetic potential of uneven shell topography. J. Geod. 76, 139–149 (2002). doi:10.1007/s00190-002-0193-5

    Article  MATH  Google Scholar 

  38. Rummel, R., Rapp, R.H., Sünkel, H., Tscherning, C.C.: Comparison of Global Topographic/Isostatic Models to the Earth’s Observed Gravitational Field, Report, 388. The Ohio State University, Columbus, Ohio, 43210–1247 (1988)

  39. Sjöberg, L.E.: Terrain effects in the atmospheric gravity and geoid correction. Bull. Geod. 64, 178–184 (1993)

    Article  Google Scholar 

  40. Sjöberg, L.E.: The atmospheric geoid and gravity corrections. Boll. Geod. Sci. Affini 57(4), 421–435 (1998)

    Google Scholar 

  41. Sjöberg, L.E.: The IAG approach to the atmospheric geoid correction in Stokes’s formula and a new strategy. J. Geod. 73, 362–366 (1999). doi:10.1007/s00190005025

    Article  MATH  Google Scholar 

  42. Sjöberg, L.E., Nahavandchi, H.: On the indirect effect in the Stokes–Helmert method of geoid determination. J. Geod. 73, 87–93 (1999). doi:10.1007/s001900050222

    Article  MATH  Google Scholar 

  43. Sjöberg, L.E.: Topographic effects by the Stokes–Helmert method of geoid and quasi-geoid determinations. J. Geod. 74(2), 255–268 (2000). doi:10.1007/s001900050284

    Article  MATH  Google Scholar 

  44. Sjöberg, L.E., Nahavandchi, H.: The atmospheric geoid effects in Stokes formula. Geophys. J. Int. 140, 95–100 (2000). doi:10.1046/j.1365-246x.2000.00995.x

    Article  Google Scholar 

  45. Sjöberg, L.E.: Topographic and atmospheric corrections of gravimetric geoid determination with special emphasis on the effects of harmonics of degrees zero and one. J. Geod. 75, 283–290 (2001). doi:10.1007/s001900100174

    Article  MATH  Google Scholar 

  46. Sjöberg, L.E.: The effects of Stokes’s formula for an ellipsoidal layering of the Earth’s atmosphere. J. Geod. 79, 675–681 (2006), doi:10.1007/s00190-005-0018-4

    Article  MATH  Google Scholar 

  47. Sjöberg, L.E.: Topographic bias by analytical continuation in physical geodesy. J. Geod. 81, 345–350 (2007). doi:10.1007/s00190-006-0112-2

    Article  MATH  Google Scholar 

  48. Sjöberg, L.E.: Solving Vening Meinesz–Moritz inverse problem in isostasy. Geophys. J. Int. 179, 1527–1536 (2009)

    Article  Google Scholar 

  49. Sun, W., Sjöberg, L.E.: Convergence and optimal truncation of binomial expansions used in isostatic compensations and terrain corrections. J. Geod. 74, 627–636 (2001)

    Article  Google Scholar 

  50. Sünkel, H.: Global topographic–isostatic models. In: Sünkel, H. (ed.) Mathematical and Numerical Techniques in Physical Geodesy. Lecture Notes in Earth Sciences, vol. 7, pp. 417–462. Springer-Verlag (1986)

  51. Tenzer, R.: Spectral domain of Newton’s integral. Boll. Geod. Sci. Affini 2, 61–73 (2005)

    Google Scholar 

  52. Tenzer, R., Hamayun, K., Vajda, P.: Global secondary indirect effects of topography, bathymetry, ice and sediments. Contrib. Geophys. Geod. 38(2), 209–216 (2008a)

    Google Scholar 

  53. Tenzer, R., Hamayun, K., Vajda, P.: Global map of the gravity anomaly corrected for complete effects of the topography, and of density contrasts of global ocean, ice, and sediments. Contrib. Geophys. Geod. 38(4), 357–370 (2008b)

    Google Scholar 

  54. Tenzer, R., Hamayun, K., Vajda, P.: Global maps of the CRUST 2.0 crustal components stripped gravity disturbances. J. Geophys. Res. 114(B), 05408 (2009a)

    Article  Google Scholar 

  55. Tenzer, R., Vajda, P., Hamayun, K.: Global atmospheric corrections to the gravity field quantities. Contrib. Geophys. Geodes. 39(3), 221–236 (2009b)

    Article  Google Scholar 

  56. Tenzer, R., Hamayun, K., Vajda, P.: A global correlation of the step-wise consolidated crust-stripped gravity field quantities with the topography, bathymetry, and the CRUST 2.0 Moho boundary. Contrib. Geophys. Geod. 39(2), 133–147 (2009c)

    Article  Google Scholar 

  57. Tenzer, R., Vajda, P., Hamayun, K.: A mathematical model of the bathymetry-generated external gravitational field. Contrib. Geophys. Geod. 40(1), 31–44 (2010a)

    Article  Google Scholar 

  58. Tenzer, R., Abdalla, A., Vajda, P., Hamayun, K.: The spherical harmonic representation of the gravitational field quantities generated by the ice density contrast. Contrib. Geophys. Geod. 40(3), 207–223 (2010b)

    Article  Google Scholar 

  59. Tenzer, R., Novák, P., Gladkikh, V.: The bathymetric stripping corrections to gravity field quantities for a depth-dependent model of the seawater density. Mar. Geod. (2011a) Submitted 29 Oct 2010

  60. Tenzer, R., Novák, P., Gladkikh, V.: On the accuracy of the bathymetry-generated gravitational field quantities for a depth-dependent seawater density distribution. Stud. Geophys. Geod. (2011b) (accepted)

  61. Tenzer, R., Hamayun, K., Novák, P., Gladkikh, V., Vajda, P.: Global crust–mantle density contrast estimated from EGM2008, DTM2008, CRUST2.0, and ICE-5G. Pure Appl. Geophys. (2011c) (submitted)

  62. Torge, W.: Geodesy, 3rd edn. Walter de Gruyter, Berlin (2001)

    Book  Google Scholar 

  63. Tsoulis, D.: Spherical harmonic computations with topographic/isostatic coefficients. Reports in the series IAPG/FESG, rep. no. 3 (ISBN 3-934205-02-X). Institute of Astronomical and Physical Geodesy, Technical University of Munich (1999)

  64. Tsoulis, D.: A Comparison between the Airy–Heiskanen and the Pratt–Hayford isostatic models for the computation of potential harmonic coefficients. J. Geod. 74(9), 637–643 (2001). doi:10.1007/s001900000124

    Article  Google Scholar 

  65. Tsoulis, D.: Spherical harmonic analysis of the CRUST2.0 global crustal model. J. Geod. 78(1/2), 7–11 (2004a)

    Google Scholar 

  66. Tsoulis, D.: Two Earth gravity models from the analysis of global crustal data. Z. Vermess. Wes. 129(5), 311–316 (2004b)

    Google Scholar 

  67. Tsoulis, D., Venesis, C.: Numerical analysis of crustal database CRUST2.0 and comparisons with Airy defined Moho signatures. Geod. Kartogr. 55(4), 175–191 (2006)

    Google Scholar 

  68. Tsoulis, D., Grigoriadis, V.N., Tziavos, I.N.: Evaluation of the CRUST2.0 global database for the Hellenic area in view of regional applications of gravity field modeling. In: Kilicoglu, A., Forsberg, R. (eds.) Gravity Field of the Earth. Proceedings of the 1st International Symposium of the International Gravity Field Service, General Command of Mapping, Special Issue, vol. 18, pp. 348–353. Ankara (2007)

  69. Vajda, P., Vaníček, P., Novák, P., Tenzer, R., Ellmann, A.: Secondary indirect effects in gravity anomaly data inversion or interpretation. J. Geophys. Res., Solid Earth 112, B06411 (2007). doi:10.1029/2006JB004470

    Article  Google Scholar 

  70. Vaníček, P., Najafi, M., Martinec, Z., Harrie, L., Sjöberg, L.E.: Higher-degree reference field in the generalised Stokes–Helmert scheme for geoid computation. J. Geod. 70(3), 176–182 (1995). doi:10.1007/BF0094369

    Article  Google Scholar 

  71. Wild, F., Heck, B.: Effects of topographic and isostatic masses in satellite gravity gradiometry. In: Proceedings: Second International GOCE User Workshop GOCE. The Geoid and Oceanography, ESA-ESRIN, Frascati, Italy, March 8–10, 2004 (ESA SP-569, June 2004), CD-ROM (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Tenzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tenzer, R., Novák, P., Vajda, P. et al. Spectral harmonic analysis and synthesis of Earth’s crust gravity field. Comput Geosci 16, 193–207 (2012). https://doi.org/10.1007/s10596-011-9264-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-011-9264-0

Keywords

Navigation