Skip to main content
Log in

Modeling fractures as interfaces with nonmatching grids

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We consider a model for fluid flow in a porous medium with a fracture. In this model, the fracture is treated as an interface between subdomains, on which specific equations have to be solved. In this article, we analyze the discrete problem, assuming that the fracture mesh and the subdomain meshes are completely independent, but that the geometry of the fracture is respected. We show that despite this nonconformity, first-order convergence is preserved with the lowest-order Raviart–Thomas(-Nedelec) mixed finite elements. Numerical simulations confirm this result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alauzet, F., Mehrenberger, M.: \(\bold P^1\)-conservative solution interpolation on unstructured triangular meshes. Int. J. Numer. Methods Eng. 84(13), 1552–1588 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alboin, C., Jaffr J., é., Roberts, J.E., Serres, C.: Modeling fractures as interfaces for flow and transport in porous media. In: Chen, Z., Ewing, R.E. (eds.) Fluid flow and transport in porous media: mathematical and numerical treatment (South Hadley, MA, 2001), number 295 in Contemp. Math., pp. 13–24. Amer. Math. Soc. Providence, RI USA (2002)

    Chapter  Google Scholar 

  3. Alboin, C., Jaffré, J., Roberts, J.E., Serres, C.: Domain decomposition for flow in porous fractured media. In: Lai, C.-H., Bjorstad, P.E., Cross, M., Widlund, O.B. (eds.) Domain Decomposition Methods in Sciences and Engineering, pp. 365–373. Domain Decomposition 1999)

  4. Amir, L., Kern, M., Martin, V., Roberts, J.E.: Décomposition de domaine pour un milieu poreux fracturé: un modèle en 3d avec fractures qui s’intersectent. ARIMA 5, 11–25 (2006)

    Google Scholar 

  5. Angot, Ph., Boyer, F., Hubert, F.: Asymptotic and numerical modelling of flows in fractured porous media. M2AN 43(2), 239–275 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arbogast, T., Cowsar, L.C., Wheeler, M.F., Yotov, I.: Mixed finite element methods on non-matching multiblock grids. SIAM J. Numer. Anal. 37, 1295–1315 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bernardi, C., Maday, Y., Patera, A.T.: A new nonconforming approach to domain decomposition: the mortar element method. In: Nonlinear partial differential equations and their applications. Collège de France Seminar, vol. XI (Paris, 1989–1991). Pitman Res. Notes Math. Ser., vol. 299, pp 13–51. Longman Sci. Tech., Harlow (1994)

    Google Scholar 

  8. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  9. D’Angelo, C., Scotti, A.: A mixed finite element method for Darcy flow in fractured porous media with non-matching grids. Math Model Numer Anal 46(02), 465–489 (2012)

    Article  Google Scholar 

  10. Faille, I., Flauraud, E., Nataf, F., Pegaz-Fiornet, S., Schneider, F., Willien, F.: A new fault model in geological basin modelling, application to finite volume scheme and domain decomposition methods. In: Herbin, R., Kroner, D. (eds.) Finie volumes for complex applications III, pp. 543–550. Hermés Penton Sci. (2002)

  11. Frih, N., Roberts, J.E., Saada, A.: Un modèle Darcy-Forchheimer pour un écoulement dans un milieu poreux fracturé. ARIMA 5, 129–143 (2006)

    Google Scholar 

  12. Frih, N., Roberts, J.E., Saada, A.: Modeling fractures as interfaces: a model for Forchheimer fractures. Comput. Geosci. 12, 91–104 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grisvard, P.: Singularities in Boundary Value Problems. Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 22. Masson, Paris (1992)

    Google Scholar 

  14. Huang, H., Long, T., Wan, J., Brown, W.: On the use of enriched finite element method to model subsurface features in porous media flow problems. Comput. Geosci. 15, 721–736 (2011). doi:10.1007/s10596-011-9239-1

    Article  MathSciNet  MATH  Google Scholar 

  15. Jaffré, J., Martin, V., Roberts, J.E.: Generalized cell-centered finite volume methods for flow in porous media with faults. In: Finite Volumes for Complex Applications, III, pp. 343–350. Hermes Sci., Paris (2002)

    Google Scholar 

  16. Lessingo, M., D’Angelo, C., Quarteroni, A.: A multiscale Darcy–Brinkman model for fluid flow in fractured porous media. Numer. Math. 117(4), 717–752 (2011)

    Article  MathSciNet  Google Scholar 

  17. Martin, V., Jaffré, J., Roberts, J.E.: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26(5), 1667–1691 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Moreles, F., Showalter, R.E.: The narrow fracture approximation by channeled flow. J Math Anal Appl 365(1), 320–331 (2010)

    Article  MathSciNet  Google Scholar 

  19. Reichenberger, V., Jakobs, H., Bastian, P., Helmig, R.: A mixed-dimensional finite volume method for multiphase flow in fractured porous media. Adv. Water Resour. 29(7), 1020–1036 (2006)

    Article  Google Scholar 

  20. Roberts, J.E., Thomas, J.-M.: Mixed and hybrid methods. In: Ciarlet, P.G., Lyons, J.-L. (eds.) Handbook of Numerical Analysis, vol. 2, pp. 523–639. Elsevier, Amsterdam (1991)

    Google Scholar 

  21. Tunc, X., Faille, I., Gallouët, T., Cacas, M., Havé, P.: A model for conductive faults with non-matching grids. Comput. Geosci. 16(2), 277–296 (2012) doi:10.1007/s10596-011-9267-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Elizabeth Roberts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frih, N., Martin, V., Roberts, J.E. et al. Modeling fractures as interfaces with nonmatching grids. Comput Geosci 16, 1043–1060 (2012). https://doi.org/10.1007/s10596-012-9302-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-012-9302-6

Keywords

Mathematics Subject Classifications (2010)

Navigation