Skip to main content
Log in

Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

This paper is a prequel to that of Marchand et al. (Comput Geosci 16:691–708, 2012), where an efficient and accurate hybrid-mixed finite element approximation for a system of time-dependent nonlinear conservation equations has been formulated, implemented, and tested, which are general enough to represent most of the existing formulations for two-component liquid–gas flow in porous medium with phase exchange, also allowing for any (dis)appearance of one of the phases. Temperature variation is neglected, but capillary effects are included by extended Darcy’s law, and Fickian diffusion is taken into account. The efficiency and stability of the numerical method of Lake (1989) relies on an equivalent reformulation of the otherwise commonly used model in terms of new principal variables and subsequent static (flash) equations allowing more generally for any (dis)appearance of one of the phases without the need of variable switching or unphysical quantities. In particular, the formulation in terms of complementarity conditions allows for an efficient and stable solution by the semismooth Newton’s method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abadpour, A., Panfilov, M.: Method of negative saturations for modeling two-phase compositional flow with oversaturated zones. Transp. Porous Media 79, 197–214 (2009)

    Article  Google Scholar 

  2. Angelini, O., Chavant, C., Chénier, E., Eymard, R., Granet, S.: Finite volume approximation of a diffusion–dissolution model and application to nuclear waste storage. Math. Comput. Simul. 81(10), 2001–2017 (2010)

    Article  Google Scholar 

  3. Battino, R., Clever, H.L.: The solubility of gases in liquids. Chem. Rev. 66(4), 395–463 (1966)

    Article  Google Scholar 

  4. Bear, J., Verruijt, A.: Modeling Groundwater Flow and Pollution. Reidel, Asmterdam (1987)

    Book  Google Scholar 

  5. Ben Gharbia, I., Gilbert, J.: Nonconvergence of the plain Newton-min algorithm for linear complementarity problems with a P-matrix. Math. Program. (2011). doi:10.1007/s10107-010-0439-6

    Google Scholar 

  6. Ben Gharbia, I., Jaffré, J.: Gas phase appearance and disappearance as a problem with complementarity constraints. Math. Comput. Simul. (2013, in press). URL: http://arxiv.org/abs/1111.3808

  7. Bird, W.E., Lightfoot, E.N.: Transport Phenomena. Second Edition. Wiley, New York (2002)

    Google Scholar 

  8. Bourgeat, A., et al.: Numerical test data base. URL: http://momas.univ-lyon1.fr/cas_test.html. Accessed 6 Feb 2013

  9. Bourgeat, A., Jurak, M., Smaï, F.: Two-phase, partially miscible flow and transport modeling in porous media: application to gas migration in a nuclear waste repository. Comput. Geosci. 13(1), 29–42 (2009)

    Article  Google Scholar 

  10. Bourgeat, A., Jurak, M., Smaï, F.: Modelling and numerical simulation of gas migration in a nuclear waste repository (2010). URL: http://arxiv.org/abs/1006.2914

  11. Bourgeat, A.P., Granet, S., Smaï, F.: Compositional two-phase flow in saturated-unsaturated porous media: benchmarks for phase appearance/disappearance (2012, in press)

  12. Buchholzer, H., Kanzow, C., Knabner, P., Kräutle, S.: The semismooth Newton method for the solution of reactive transport problems including mineral precipitation–dissolution reactions. Comput. Optim. Appl. 50, 193–221 (2011)

    Article  Google Scholar 

  13. Chavent, G., Jaffré, J.: Mathematical Models and Finite Elements for Reservoir Simulation. North Holland, Amsterdam (1986)

  14. Class, H., Helmig, R., Bastian, P.: Numerical simulation of nonisothermal multiphase multicomponent processes in porous media 1. An efficient solution technique. Adv. Water Resour. 25, 533–550 (2002)

    Article  Google Scholar 

  15. Class, H., Dahle, H.K., Helmig, R. (guest eds.): Special issue: numerical models for carbon-dioxide storage in geological formations. Comput. Geosci. 13(4), 405–509 (2009)

    Article  Google Scholar 

  16. Class, H., Ebigbo, A., Helmig, R., Dahle, H.K., Nordbotten, J.M., Celia, M.A., Audigane, P., Darcis, M., Ennis-King, J., Fan, Y., Flemisch, B., Gasda, S.E., Jin, M., Krug, S., Labregere, D., Beni, A.N., Pawar, R.J., Sbai, A., Thomas, S.G., Trenty, L., Wei, L.: A benchmark study on problems related to CO2 storage in geologic formations. Summary and discussion of the results. Comput. Geosci. 13, 409–434 (2009)

    Article  Google Scholar 

  17. Darcy, H.: Détermination des lois d’écoulement de l’eau à travers le sable. In: Les Fontaines Publiques de la Ville de Dijon. V. Dalmont, Paris (1856). Appendice—Note D

  18. Deuflhard, P.: Newton methods for nonlinear problems. In: Springer Series in Computational Mathematics. Springer, Berlin (2004)

    Google Scholar 

  19. Ern, A., Mozolevski, I.: Discontinuous Galerkin method for two-component liquid–gas porous media flows. Comput. Geosci. 16, 677–690 (2012)

    Article  Google Scholar 

  20. Gasmi, C.F., Voskov, D.V., Tchelepi, H.A.: A new method for thermodynamic equilibrium computation of systems with an arbitrary number or phases. In: SPE Reservoir Simulation Symposium, SPE 119060 (2009)

  21. Ho, C.K., Webb, S.W. (eds.): Gas Transport in Porous Media. Springer, New York (2006)

    Google Scholar 

  22. Hou, M.Z., Xie, H., Yoon, J. (eds.): Underground Storage of CO2 and Energy. Balkema, Rotterdam (2010)

    Google Scholar 

  23. Ito, K., Kunish, K.: On a semi-smooth Newton method and its globalization. Math. Program. Ser. A 118, 347–370 (2009)

    Article  Google Scholar 

  24. Jaffré, J., Sboui, A.: Henry’s law and gas phase disappearance. Transp. Porous Media 82, 521–526 (2010)

    Article  Google Scholar 

  25. Knabner, P., van Duijn, C.J., Hengst, S.: An analysis of crystal dissolutions fronts of flows through porous media. Part 1: Compatible boundary conditions. Adv. Water Resour. 18, 171–185 (1995)

    Article  Google Scholar 

  26. Kräutle, S.: General multi-species reactive transport problems in porous media: efficient numerical approaches and existence of global solutions. Chapter 4: reactions with minerals: a complementarity problem solved by the semismooth Newton method (2008). URL: http://www1.am.uni-erlangen.de/~kraeutle/habil.pdf. Habilitationsschrift

  27. Kräutle, S.: The semismooth Newton method for multicomponent reactive transport with minerals. Adv. Water Resour. 34(1), 137–151 (2011)

    Article  Google Scholar 

  28. Krishna, R., Wesselingh, J.A.: The Maxwell–Stefan approach to mass transfer. Chem. Eng. Sci. 52(6), 861–911 (1997)

    Article  Google Scholar 

  29. Lake, L.W.: Enhanced Oil Recovery. Prentice-Hall, Englewood Cliffs (1989)

    Google Scholar 

  30. Landau, L.D., Lifshitz, E.M.: Statistical Physics Part 1. Pergamon, New York (1959)

    Google Scholar 

  31. Lauser, A., Hager, C., Helmig, R., Wohlmuth, B.: A new approach for phase transitions in miscible multi-phase flow in porous media. Adv. Water Resour. 34, 957–966 (2011)

    Article  Google Scholar 

  32. Marchand, E., Müller, T., Knabner, P.: Fully coupled generalised hybrid-mixed finite element approximation of two-phases two-components flow in porous media. Part II: numerical scheme and numerical results. Comput. Geosci. 16, 691–708 (2012)

    Article  Google Scholar 

  33. Michelsen, M.L.: The isothermal flash problem. Part II. Phase-split calculation. Fluid Phase Equilib. 9, 21–40 (1982)

    Article  Google Scholar 

  34. Neumann, R., Bastian, P., Ippisch, O.: Modeling and simulation of two-phase two-component flow with disappearing nonwetting phase. Comput. Geosci. (2012). doi:10.1007/s10596-012-9321-3

    Google Scholar 

  35. Orr, F.M. Jr., Jessen, K.: An analysis of the vanishing interfacial tension technique for determination of minimum miscibility pressure. Fluid Phase Equilib. 255, 99–109 (2007)

    Article  Google Scholar 

  36. Otto, F.: L1-contraction and uniqueness for quasilinear elliptic-parabolic equations. J. Differ. Equ. 131, 20–38 (1996)

    Article  Google Scholar 

  37. Panfilov, M., Rasoulzadeh, M.: Interfaces of phase transition and disappearance and method of negative saturation for compositional flow with diffusion and capillarity in porous media. Transp. Porous Media 83, 73–78 (2010)

    Article  Google Scholar 

  38. Shapiro, A.A., Stenby, E.H.: Thermodynamics of the multicomponent vapor–liquid equilibrium under capillary pressure difference. Fluid Phase Equilib. 178, 17–32 (2001)

    Article  Google Scholar 

  39. Smaï, F.: Développement d’outils mathématiques et numériques pour l’évaluation du concept de stockage géologique. Ph.D. thesis, Université de Lyon (2009)

  40. Spycher, N., Pruess, K., Ennis-King, J.: CO2-H2O mixtures in the geological sequestration of CO2. I. Assesment and calculation of mutual solubilities from 12 to 100o and up to 600 bar. Geochim. Cosmochim. Acta 67(16), 3015–3031 (2003)

    Article  Google Scholar 

  41. Whitson, C.H., Michelsen, M.L.: The negative flash. Fluid Phase Equilib. 53, 51–71 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Marchand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchand, E., Müller, T. & Knabner, P. Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model. Comput Geosci 17, 431–442 (2013). https://doi.org/10.1007/s10596-013-9341-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-013-9341-7

Keywords

Mathematics Subject Classification (2010)

Navigation