Skip to main content
Log in

A monotone nonlinear finite volume method for diffusion equations and multiphase flows

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We present a new nonlinear monotone finite volume method for diffusion equation and its application to two-phase flow model. We consider full anisotropic discontinuous diffusion or permeability tensors on conformal polyhedral meshes. The approximation of the diffusive flux uses the nonlinear two-point stencil which provides the conventional seven-point stencil for the discrete diffusion operator on cubic meshes. We show that the quality of the discrete flux in a reservoir simulator has great effect on the front behavior and the water breakthrough time. We compare two two-point flux approximations (TPFA), the proposed nonlinear TPFA and the conventional linear TPFA, and multipoint flux approximation (MPFA). The new nonlinear scheme has a number of important advantages over the traditional linear discretizations. Compared to the linear TPFA, the nonlinear TPFA demonstrates low sensitivity to grid distortions and provides appropriate approximation in case of full anisotropic permeability tensor. For nonorthogonal grids or full anisotropic permeability tensors, the conventional linear TPFA provides no approximation, while the nonlinear flux is still first-order accurate. The computational work for the new method is higher than the one for the conventional TPFA, yet it is rather competitive. Compared to MPFA, the new scheme provides sparser algebraic systems and thus is less computational expensive. Moreover, it is monotone which means that the discrete solution preserves the nonnegativity of the differential solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aavatsmark, I., Eigestad, G., Mallison, B., Nordbotten, J.: A compact multipoint flux approximation method with improved robustness. Numer. Methods Partial Diff. Equ. 24(5), 1329–1360 (2008)

    Article  Google Scholar 

  2. Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Applied Science Publishers Ltd., London (1979)

    Google Scholar 

  3. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991)

    Book  Google Scholar 

  4. Chen, Z., Huan, G., Ma, Y.: Computational Methods for Multiphase Flows in Porous Media. SIAM (2006)

  5. Danilov, A., Vassilevski, Y.: A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes. Russ. J. Numer. Anal. Math. Model. 24(3), 207–227 (2009)

    Article  Google Scholar 

  6. Kapyrin, I.: A family of monotone methods for the numerical solution of three-dimensional diffusion problems on unstructured tetrahedral meshes. Dokl. Math. 76(2), 734–738 (2007)

    Article  Google Scholar 

  7. Kuznetsov, Y., Repin, S.: New mixed finite elements method on polygonal and polyhedral meshes. Russ. J. Numer. Anal. Math. Model. 18, 261–278 (2003)

    Article  Google Scholar 

  8. LePotier, C.: Schéma volumes finis monotone pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangle non structurés. C. R. Acad. Sci. Ser. I 341, 787–792 (2005)

    Article  Google Scholar 

  9. LePotier, C.: Finite volume Scheme Satisfying Maximum and Minimum Principles for Anisotropic Diffusion Operators, FVCA V. pp. 103–118 (2008)

  10. LePotier, C.: Correction non linéaire et principe du maximum pour la discrétisation dopérateurs de diffusion avec des schémas volumes nis centrés sur les mailles. C. R. Acad. Sci. Ser. I 348, 691–695 (2010)

    Article  Google Scholar 

  11. Lipnikov, K., Gyrya, V.: High-order mimetic finite difference method for diffusion problem on polygonal meshes. J. Comp. Phys. 227, 8841–8854 (2008)

    Article  Google Scholar 

  12. Lipnikov, K., Svyatskiy, D., Shashkov, M., Vassilevski, Y.: Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes. J. Comp. Phys. 227, 492–512 (2007)

    Article  Google Scholar 

  13. Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes. J. Comp. Phys. 228(3), 703–716 (2009)

    Article  Google Scholar 

  14. Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: A monotone finite volume method for advection–diffusion equations on unstructured polygonal meshes. J. Comp. Phys. 229, 4017–4032 (2010)

    Article  Google Scholar 

  15. Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: Minimal stencil finite volume scheme with the discrete maximum principle. Russ. J. Numer. Anal. Math. Model. 27(4), 369–385 (2012)

    Article  Google Scholar 

  16. Nikitin, K., Vassilevski, Y.: A monotone nonlinear finite volume method for advection–diffusion equations on unstructured polyhedral meshes in 3D. Russ. J. Numer. Anal. Math. Model. 25(4), 335–358 (2010)

    Article  Google Scholar 

  17. Nikitin, K.: Nonlinear finite volume method for two-phase flow in porous media (in Russian). Math. Model. 22(11), 131–147 (2010)

    Google Scholar 

  18. Nikitin, K., Vassilevski, Y.: A Monotone Finite Volume Method for Advection Diffusion Equations and Multiphase Flows. In: Proceedings of the ECMOR XIII, EAGE (2012)

  19. Peaceman, D.W.: Interpretation of Well-Block Pressures in Numerical Reservoir Simulation. SPEJ June, pp. 183–194 (1978)

  20. Sheng, Z., Yuan, A.: Monotone finite volume schemes for diffusion equations on polygonal meshes. J. Comp. Phys. 227(12), 6288–6312 (2008)

    Article  Google Scholar 

  21. Sheng, Z., Yuan, A.: The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes. J. Comp. Phys. 230(7), 2588–2604 (2011)

    Article  Google Scholar 

  22. Terekhov, K., Vassilevski, Y.: Two-phase water flooding simulations on dynamic adaptive octree grids with two-point nonlinear fluxes. Russ. J. Numer. Anal. Math. Model. 28(3) (2013). to appear

  23. Vassilevski, Y., Kapyrin, I.: Two splitting schemes for nonstationary convection-diffusion problems on tetrahedral meshes. Comp. Math. Math. Phys. 48(8), 1349–1366 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill Nikitin.

Additional information

This work has been supported in part by RFBR grants 11-01-00971, 12-01-31275, 12-01-33084, Russian Presidential grant MK-7159.2013.1, Federal target programs “Scientific and scientific-pedagogical personnel of innovative Russia” and “Research and development for priority directions of science and technology complex of Russia”, ExxonMobil Upstream Research Company, and project “Breakthrough” of Rosatom

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikitin, K., Terekhov, K. & Vassilevski, Y. A monotone nonlinear finite volume method for diffusion equations and multiphase flows. Comput Geosci 18, 311–324 (2014). https://doi.org/10.1007/s10596-013-9387-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-013-9387-6

Keywords

Navigation