Skip to main content
Log in

Robust iterative schemes for non-linear poromechanics

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We consider a non-linear extension of Biot’s model for poromechanics, wherein both the fluid flow and mechanical deformation are allowed to be non-linear. Specifically, we study the case when the volumetric stress and the fluid density are non-linear functions satisfying certain assumptions. We perform an implicit discretization in time (backward Euler) and propose two iterative schemes for solving the non-linear problems appearing within each time step: a splitting algorithm extending the undrained split and fixed stress methods to non-linear problems, and a monolithic L-scheme. The convergence of both schemes are shown rigorously. Illustrative numerical examples are presented to confirm the applicability of the schemes and validate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abousleiman, Y., Cheng, A.H.D., Cui, L., Detournay, E., Roegiers, J.C.: Mandel’s problem revisited. Géotechnique 46(2), 187–195 (1996)

    Article  Google Scholar 

  2. Adler, J.H., Gaspar, F.J., Hu, X., Rodrigo, C., Zikatanov, L.T.: Robust block preconditioners for Biot’s model. arXiv:1705.08842 (2017)

  3. Almani, T., Kumar, K., Dogru, A.H., Singh, G., Wheeler, M.F.: Convergence analysis of multirate fixed-stress split iterative schemes for coupling flow with geomechanics. Comput. Methods. Appl. Mech. Eng. 311, 180–207 (2016)

    Article  Google Scholar 

  4. Armero, F.: Formulation and finite element implementation of a multiplicative model of coupled poro-plasticity at finite strains under fully saturated conditions. Comput. Methods. Appl. Mech. Eng. 171(3), 205–241 (1999)

    Article  Google Scholar 

  5. Armero, F., Simo, J.C.: A new unconditionally stable fractional step method for non-linear coupled thermomechanical problems. Int. J. Numer. Meth. Eng. 35(4), 737–766 (1992)

    Article  Google Scholar 

  6. Bangerth, W., Kanschat, G., Heister, T.: Deal. II Differential equations analysis library (2014)

  7. Bause, M., Radu, F.A., Kocher, U.: Space-time finite element approximation of the Biot poroelasticity system with iterative coupling. Comput. Methods. Appl. Mech. Eng. 320(15), 745–768 (2017)

    Article  Google Scholar 

  8. Biot, M.A.: Consolidation settlement under a rectangular load distribution. J. Appl. Phys. 12(5), 426–430 (1941)

    Article  Google Scholar 

  9. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    Article  Google Scholar 

  10. Biot, M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26(2), 182–185 (1955)

    Article  Google Scholar 

  11. Both, J.W., Borregales, M., Nordbotten, J.M., Kumar, K., Radu, F.A.: Robust fixed stress splitting for Biot’s equations in heterogeneous media. Appl. Math. Lett. 68, 101–108 (2017)

    Article  Google Scholar 

  12. Both, J.W., Kumar, K., Nordbotten, J.M., Radu, F.A.: Iterative methods for coupled flow and geomechanics in unsaturated porous media. In: Proceedings of the Sixth Biot conference on poromechanics, Paris (2017). https://doi.org/10.1061/9780784480779.050

  13. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods, Springer Ser. Comput. Math, vol. 15. Springer, New York (2012)

    Google Scholar 

  14. Castelletto, N., White, J.A., Ferronato, M.: Scalable algorithms for three-field mixed finite element coupled poromechanics. J. Comput. Phys. 327, 894–918 (2016)

    Article  Google Scholar 

  15. Castelletto, N., White, J.A., Tchelepi, H.A.: Accuracy and convergence properties of the fixed-stress iterative solution of two-way coupled poromechanics. Int. J. Numer. Anal. Meth. Geomech. 39(14), 1593–1618 (2015)

    Article  Google Scholar 

  16. Chin, L.Y., Thomas, L.K., Sylte, J.E., Pierson, R.G.: Iterative coupled analysis of geomechanics and fluid flow for rock compaction in reservoir simulation. Oil Gas Sci. Technol. 57(5), 485–497 (2002)

    Article  Google Scholar 

  17. Coussy, O.: A general theory of thermoporoelastoplasticity for saturated porous materials. Trans. Por. Med. 4(3), 281–293 (1989)

    Article  Google Scholar 

  18. Coussy, O.: Mechanics of Porous Continua. Wiley, New York (1995)

    Google Scholar 

  19. Coussy, O.: Mechanics of Porous Continua. Wiley, New York (2004)

    Google Scholar 

  20. Detournay, E., Cheng, A.H.D.: Fundamentals of Poroelasticity, vol. 2, chap. 5. Pergamon Press, Oxford (1993)

  21. Doster, F., Nordbotten, J.M.: Full pressure coupling for geo-mechanical multi-phase multi-component flow simulations, paper SPE 173232 presented at the SPE Reservoir Simulation Symposium Houston (2015)

  22. Fung, L.S.K., Buchanan, L., Wan, R.G.: Coupled geomechanical-thermal simulation for deforming heavy-oil reservoirs. J. Can. Pet. Technol. 33(04) (1994)

  23. Gai, X., Dean, R.H., Wheeler, M.F., Liu, R.: Coupled geomechanical and reservoir modeling on parallel computers, paper SPE 79700 presented at the SPE Reservoir Simulation Symposium Houston (2003)

  24. Gai, X., Wheeler, M.F.: Iteratively coupled mixed and Galerkin finite element methods for poro-elasticity. Numer. Methods. Partial. Diff. Equations 23(4), 785–797 (2007)

    Article  Google Scholar 

  25. Girault, V., Kumar, K., Wheeler, M.F.: Convergence of iterative coupling of geomechanics with flow in a fractured poroelastic medium. Comput. Geosci. 20(5), 997–1011 (2016)

    Article  Google Scholar 

  26. Haga, J.B., Osnes, H., Langtangen, H.P.: Efficient block preconditioners for the coupled equations of pressure and deformation in highly discontinuous media. Int. J. Numer. Anal. Meth. Geomech. 35(13), 1466–1482 (2011)

    Google Scholar 

  27. Jeannin, L., Mainguy, M., Masson, R., Vidal-Gilbert, S.: Accelerating the convergence of coupled geomechanical-reservoir simulations. Int. J. Numer. Anal. Meth. Geomech. 31(10), 1163–1181 (2007)

    Article  Google Scholar 

  28. Jha, B., Juanes, R.: A locally conservative finite element framework for the simulation of coupled flow and reservoir geomechanics. Acta Geotech. 2(3), 139–153 (2007)

    Article  Google Scholar 

  29. Kim, J., Tchelepi, H., Juanes, R.: Stability and convergence of sequential methods for coupled flow and geomechanics: drained and undrained splits. Comput. Methods. Appl. Mech. Eng. 200(23–24), 2094–2116 (2011)

    Article  Google Scholar 

  30. Kim, J., Tchelepi, H., Juanes, R.: Stability and convergence of sequential methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits. Comput. Methods. Appl. Mech. Eng. 200(13–16), 1591–1606 (2011)

    Article  Google Scholar 

  31. Kim, J., Tchelepi, H.A., Juanes, R.: Stability, accuracy, and efficiency of sequential methods for coupled flow and geomechanics. SPE J. 16(2), 249–262 (2011)

    Article  Google Scholar 

  32. Kumar, K., Pop, I., Radu, F.: Convergence analysis of mixed numerical schemes for reactive flow in a porous medium. SIAM J. on Numer. Anal. 51(4), 2283–2308 (2013)

    Article  Google Scholar 

  33. Lee, S., Mikelic, A., Wheeler, M.F., Wick, T.: Phase-field modeling of proppant-filled fractures in a poroelastic medium. Comput. Methods. Appl. Mech. Eng. 312, 509–541 (2016)

    Article  Google Scholar 

  34. Lewis, R.W., Schrefler, B.A.: The finite element method in the static and dynamic deformation and consolidation of porous media, 2nd edn. Wiley, Chichester (1998)

    Google Scholar 

  35. Lewis, R.W., Sukirman, Y.: Finite element modelling of three-phase flow in deforming saturated oil reservoirs. Int. J. Numer. Anal. Meth. Geomech. 17(8), 577–598 (1993)

    Article  Google Scholar 

  36. List, F., Radu, F.A.: A study on iterative methods for solving Richards’ equation. Comput. Geosci. 20(2), 341–353 (2016)

    Article  Google Scholar 

  37. Mandel, J.: Consolidation Des Sols (Étude mathématique). Gé,otechnique 3(7), 287–299 (1953)

    Google Scholar 

  38. Mikelić, A., Wang, B., Wheeler, M.F.: Numerical convergence study of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 18(3-4), 325–341 (2014)

    Article  Google Scholar 

  39. Mikelić, A., Wheeler, M.F.: Theory of the dynamic Biot-Allard equations and their link to the quasi-static Biot system. J. Math. Phys. 53(12), 123702 (2012)

    Article  Google Scholar 

  40. Mikelić, A., Wheeler, M.F.: Convergence of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 18(3-4), 325–341 (2013)

    Article  Google Scholar 

  41. Nordbotten, J.M.: Stable cell-centered finite volume discretization for Biot equations. SIAM J. Numer. Anal. 54(2), 942–968 (2016)

    Article  Google Scholar 

  42. Pettersen, O.: Coupled flow and rock mechanics simulation optimizing the coupling term for faster and accurate computation. nt. J. Numer. Anal. Model. 9(3), 628–643 (2012)

    Google Scholar 

  43. Phillips, P.J., Wheeler, M.F.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case. Comput. Geosci. 11(2), 131–144 (2007)

    Article  Google Scholar 

  44. Pop, I., Radu, F., Knabner, P.: Mixed finite elements for the richards’ equation: linearization procedure. J. Comput. Appl. Math. 168(1–2), 365–373 (2004)

    Article  Google Scholar 

  45. Prevost, J.H.: One-way versus two-way coupling in reservoir-geomechanical models. In: Proceedings of the Fifth Biot conference on Poromechanics, Vienna (2013). https://doi.org/10.1061/9780784412992.061

  46. Radu, F.A., Kumar, K., Nordbotten, J.M., Pop, I.S.: A robust, mass conservative scheme for two-phase flow in porous media including Hölder continuous nonlinearities. IMA J. Numer. Anal. (2017). https://doi.org/10.1093/imanum/drx032

  47. Radu, F.A., Nordbotten, J.M., Pop, I.S., Kumar, K.: A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow in porous media. J. Comput. Appl. Math. 289, 134–141 (2015)

    Article  Google Scholar 

  48. Radu, F.A., Pop, I.S.: Newton method for reactive solute transport with equilibrium sorption in porous media. J. Comput. Appl. Math. 234(7), 2118–2127 (2010)

    Article  Google Scholar 

  49. Radu, F.A., Wang, W.: Convergence analysis for a mixed finite element scheme for flow in strictly unsaturated porous media. Nonlinear Anal. Real World Appl. 15, 266–275 (2014)

    Article  Google Scholar 

  50. Rodrigo, C., Gaspar, F., Hu, X., Zikatanov, L.: Stability and monotonicity for some discretizations of the Biot’s consolidation model. Comput. Methods. Appl. Mech. Eng. 298, 183–204 (2016)

    Article  Google Scholar 

  51. Settari, A., Mourits, F.M.: Coupling of geomechanics and reservoir simulations models. Comput. Methods and Advances in Geomechanics (1994)

  52. Settari, A., Mourits, F.M.: A coupled reservoir and geomechanical simulation system. SPE J (1998)

  53. Settari, A., Walters, D.A.: Advances in coupled geomechanical and reservoir modeling with applications to reservoir compaction. SPE J (2001)

  54. Showalter, R.E.: Diffusion in poro-elastic media. J. Math Anal. Appl. 251(1), 310–340 (2000)

    Article  Google Scholar 

  55. Temam, R.M., Miranville, A.M.: Mathematical Modeling in Continuum Mechanics. Cambridge (2005)

  56. Thomas, J.: Sur l’ numerique des methodes d’elements finis hybrides et mixtes. Univ. Pierre et Marie Curie thèse (1977)

  57. Wan, J., Durlofsky, L., Hughes, T., Aziz, K.: Stabilized finite element methods for coupled geomechanics—reservoir flow simulations, paper SPE 79694 presented at the SPE Reservoir Simulation Symposium Houston (2003)

  58. White, D., Ganis, B., Liu, R., Wheeler, M.F.: A Near-Wellbore Study with a Drucker-Prager Plasticity Model Coupled with a Parallel Compositional Reservoir Simulator, Paper SPE-182627-MS Presented at the SPE Reservoir Simulation Conference, Texas (2017)

  59. White, J.A., Castelletto, N., Tchelepi, H.A.: Block-partitioned solvers for coupled poromechanics: a unified framework. Comput. Methods. Appl. Mech. Eng. 303, 55–74 (2016)

    Article  Google Scholar 

  60. Zienkiewicz, O.C., Paul, D.K., Chan, A.H.C.: Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems. Int. J. Numer. Meth. Eng. 26(5), 1039–1055 (1988)

    Article  Google Scholar 

Download references

Funding

The research was supported by the University of Bergen in cooperation with the FME-SUCCESS center (grant 193825/S60) funded by the Research Council of Norway. The work has also been partly supported by the following: the NFR-DAADppp grant 255715, the NFR-Toppforsk project 250223, the NRC-CHI grant 255510, and the NRC-IMMENS grant 255426.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Borregales.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borregales, M., Radu, F.A., Kumar, K. et al. Robust iterative schemes for non-linear poromechanics. Comput Geosci 22, 1021–1038 (2018). https://doi.org/10.1007/s10596-018-9736-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-018-9736-6

Keywords

Navigation