Skip to main content
Log in

Constraint satisfaction for planning and scheduling problems

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

The areas of planning and scheduling (from the Artificial Intelligence point of view) have seen important advances thanks to application of constraint satisfaction techniques. Currently, many important real-world problems require efficient constraint handling for planning, scheduling and resource allocation to competing goal activities over time in the presence of complex state-dependent constraints. Solutions to these problems require integration of resource allocation and plan synthesis capabilities. Hence to manage such complex problems planning, scheduling and constraint satisfaction must be interrelated. This special issue on Constraint Satisfaction for Planning and Scheduling Problems compiles a selection of papers dealing with various aspects of applying constraint satisfaction techniques in planning and scheduling. The core of submitted papers was formed by the extended versions of papers presented at COPLAS’2009: ICAPS 2009 Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems. This issue presents novel advances on planning, scheduling, constraint programming/constraint satisfaction problems (CSPs) and many other common areas that exist among them. On the whole, this issue mainly focus on managing complex problems where planning, scheduling, constraint satisfaction and search must be combined and/or interrelated, which entails an enormous potential for practical applications and future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barber, F., & Salido, M. A. (2011). Robustness, stability, recoverability and reliability in dynamic constraint satisfaction problems. Technical report, DSIC-IA-PS-10251/10705, Spain. http://riunet.upv.es/bitstream/handle/10251/10705/IA-PS-2011-01.pdf.

  2. Barták, R. (2003). Dynamic global constraints in backtracking based environments. Annals of Operations Research (Kluwer), 118, 101–119.

    Google Scholar 

  3. Dechter, R. (2003). Constraint processing. San Mateo: Morgan Kaufmann.

    Google Scholar 

  4. Ghallab, M., Nau, D., & Traverso, P. (2004). Automated planning. Theory and practice. San Mateo: Morgan Kaufmann.

    Google Scholar 

  5. Laborie, P., & Rogerie, J. (2008). Reasoning with conditional time-intervals. In Proceedings of the twenty-first international FLAIRS conference (pp. 555–560).

  6. Mackworth, A. K. (1977). Consistency in network of relations. Artificial Intelligence, 8, 99–118.

    Article  MATH  Google Scholar 

  7. Salido, M. A., & Barber, F. (2006). Distributed CSPs by graph partitioning. Applied Mathematics and Computation (Elsevier), 183, 491–498.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Barták.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barták, R., Salido, M.A. Constraint satisfaction for planning and scheduling problems. Constraints 16, 223–227 (2011). https://doi.org/10.1007/s10601-011-9109-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-011-9109-4

Keywords

Navigation