Skip to main content
Log in

Volatility Modeling by Asymmetrical Quadratic Effect with Diminishing Marginal Impact

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

This study presents evidence of an asymmetrical quadratic effect from financial asset return on volatility. The relationships between the two variables are quadratic for both positive and negative returns and systematically different in the two regimes. The convex relations are observed showing that extreme shocks have a diminishing marginal impact on volatility. A threshold quadratic model under GARCH framework is developed to capture the effect and applied to major stock indices. The empirical outcomes of quadratic regressions and in-sample estimations significantly confirm the asymmetrical quadratic behavior. With application of S&P500 series, both diagnoses of in-sample estimations and evaluations of out-of-sample forecasts verify the proposed specification as a valid alternative volatility modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen T. G. (1994) Stochastic autoregressive volatility: A framework for volatility modeling. Mathematical Finance 4: 75–102

    Google Scholar 

  • Baillie R. T., Bollerslev T., Mikkelsen H. O. (1996) Fractionally integrated generalized autoregressive conditional heteroscedasticity. Journal of Econometrics 74: 3–30

    Article  Google Scholar 

  • Bakshi G., Ju N., Ou-Yang H. (2006) Estimation of continuous-time models with an application to equity volatility dynamics. Journal of Financial Economics 82: 227–249

    Article  Google Scholar 

  • Bauwens L., Laurent S., Rombouts J. (2006) Multivariate GARCH models: A survey. Journal of Applied Econometrics 21: 79–109

    Article  Google Scholar 

  • Bekaert G., Wu G. (2000) Asymmetric volatility and risk in equity markets. Review of Financial Studies 13: 1–42

    Article  Google Scholar 

  • Berkes I., Horvath L., Kokoszka P. (2003) GARCH processes: Structure and estimation. Bernoulli 9: 201–227

    Article  Google Scholar 

  • Blair B., Poon S., Taylor S. J. (2001) Forecasting S&P100 volatility: The incremental information content of implied volatilities and high frequency index returns. Journal of Econometrics 105: 5–26

    Article  Google Scholar 

  • Bollerslev T. (1986) Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics 31: 307–328

    Article  Google Scholar 

  • Bollerslev T. (1987) A conditionally heteroskedastic time series model for speculative prices and rates of return. Review of Economics and Statistics 69: 542–547

    Article  Google Scholar 

  • Bollerslev T., Ghysels E. (1996) Periodic autoregressive conditional heteroscedasticity. Journal of Business and Economic Statistics 14: 139–151

    Article  Google Scholar 

  • Bollerslev T., Chou R. Y., Kroner K. F. (1992) ARCH modeling in finance: A review of the theory and empirical evidences. Journal of Econometrics 52: 5–59

    Article  Google Scholar 

  • Carnero M. A., Peña D., Ruiz E. (2007) Effects of outliers on the identification and estimation of the GARCH models. Journal of Time Series Analysis 28: 471–497

    Article  Google Scholar 

  • Charles A. (2008) Forecasting volatility with outliers in GARCH models. Journal of Forecasting 27: 551–565

    Article  Google Scholar 

  • Chiarella C., To T.-D. (2006) The multifactor nature of the volatility of futures markets. Computational Economics 27: 163–183

    Article  Google Scholar 

  • Enders W. (2004) Applied econometric time series. Wiley Series in Probability and Statistics. Wiley, New York, NY

    Google Scholar 

  • Engle R. F. (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation. Econometrica 50: 987–1008

    Article  Google Scholar 

  • Engle R. F., Bollerslev T. (1986) Modelling the persistence of conditional variance. Econometric Review 5: 1–50

    Article  Google Scholar 

  • Engle R. F., Ng V. K. (1993) Measuring and testing the impact of news on volatility. Journal of Finance 48: 1749–1778

    Article  Google Scholar 

  • Eraker B., Johannes M., Polson N. (2003) The impact of jumps in volatility and returns. Journal of Finance 58: 1269–1300

    Article  Google Scholar 

  • Fama E. F. (1965) The behavior of stock market prices. Journal of Business 38: 34–105

    Article  Google Scholar 

  • Francq C., Zakoian J. M. (2004) Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes. Bernoulli 10: 605–637

    Article  Google Scholar 

  • Franses P. H., van Dijk D. (1996) Forecasting stock market volatility using (non-linear) GARCH models. Journal of Forecasting 15: 229–235

    Article  Google Scholar 

  • Gilli M., Kellezi E. (2006) An application of extreme value theory for measuring financial risk. Computational Economics 27: 207–228

    Article  Google Scholar 

  • Glosten L. R., Jagannathan R., Runkle D. E. (1993) On the relation between the expected value and the volatility of the normal excess return on stocks. Journal of Finance 48: 1779–1801

    Article  Google Scholar 

  • Haas M., Mittnik S., Paolella M. S. (2004) A new approach to Markov-switching GARCH models. Journal of Financial Econometrics 2: 493–530

    Article  Google Scholar 

  • Hsieh D. (1989) Modeling heteroskedasticity in daily foreign exchange rates. Journal of Business and Economic Statistics 7: 307–317

    Article  Google Scholar 

  • Laurent S. (2004) Analytical derivatives of the APARCH model. Computational Economics 24: 51–57

    Article  Google Scholar 

  • Ling S., McAleer M. (2002) Stationarity and the existence of moments of a family of GARCH processes. Journal of Econometrics 106: 109–117

    Article  Google Scholar 

  • Lopez J. (2001) Evaluating the predictive accuracy of volatility models. Journal of Forecasting 20: 87–109

    Article  Google Scholar 

  • Nelson D. B. (1991) Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59: 347–370

    Article  Google Scholar 

  • Rabemananjara R., Zakoian J. M. (1993) Threshold ARCH models and asymmetries in volatility. Journal of Applied Econometrics 8: 31–49

    Article  Google Scholar 

  • Ramsey J. B. (1969) Tests for specification errors in classical linear least-squares analysis. Journal of the Royal Statistical Association (Series B) 71: 350–371

    Google Scholar 

  • Sentana E. (1995) Quadratic ARCH models. Review of Economic Studies 62: 639–661

    Article  Google Scholar 

  • Thiel H. (1966) Applied economic forecasting. Rand McNally, Chicago, IL

    Google Scholar 

  • van Dijk D., Franses P. H., Lucas A. (2002) Testing for ARCH in the presence of additive outliers. Journal of Applied Econometrics 14: 539–562

    Article  Google Scholar 

  • Yu J. (2005) On leverage in a stochastic volatility model. Journal of Econometrics 127: 165–178

    Article  Google Scholar 

  • Zakoian J. M. (1994) Threshold heteroscedastic models. Journal of Economic Dynamics and Control 18: 931–995

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex YiHou Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, A.Y. Volatility Modeling by Asymmetrical Quadratic Effect with Diminishing Marginal Impact. Comput Econ 37, 301–330 (2011). https://doi.org/10.1007/s10614-011-9254-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-011-9254-2

Keywords

JEL Classification

Navigation