Skip to main content
Log in

Capturing the Regime-Switching and Memory Properties of Interest Rates

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

We propose a mean-reverting interest rate model whose mean-reverting level, speed of mean-reversion and volatility are all modulated by a weak Markov chain (WMC). This model features a simple way to capture the regime-switching evolution of the parameters as well as the memory property of the data. Concentrating on the second-order WMC framework, we derive the filters of the WMC and other auxiliary processes through a change of reference probability measure. Optimal estimates of model parameters are provided by employing the EM algorithm. The \(h\)-step ahead forecasts under our proposed set-up are examined and compared with those under the usual Markovian regime-switching framework. We obtain better goodness-of-fit performance based on our numerical results generated from the implementation of WMC-based filters to a 10-year dataset of weekly short-term-maturity Canadian yield rates. Some statistical inference issues of the proposed modelling approach are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abry, P., & Veitch, D. (1998). Wavelet analysis of long-range-dependent traffic. IEEE Transaction on Information Theory, 44(1), 2–15.

    Article  Google Scholar 

  • Audrino, F., & Medeiros, M. (2011). Modelling and forecasting short-term interest rates: The benefits of smooth regimes, macroeconomic variables and bagging. Journal of Applied Econometrics, 26(6), 999–1022.

    Article  Google Scholar 

  • Bouchaud, J., & Potters, M. (2004). Theory of financial risk and derivative pricing: From statistical physics to risk management. Cambridge: Cambridge University Press.

    Google Scholar 

  • Cajueiro, D., & Tabak, B. (2007). Long-range dependence and multifractality in the term structure of LIBOR interest rates. Physica A (Statistical Mechanics and Its Applications), 373, 603–614.

    Article  Google Scholar 

  • Cajueiro, D., & Tabak, B. (2007). Time-varying long-range dependence in US interest rates. Chaos Solitons and Fractals, 34, 360–367.

    Article  Google Scholar 

  • Chapman, D., Long, J., & Pearson, N. (1999). Using proxies for the short rate: When are three months like an instant? Review of Financial Studies, 12, 763–806.

    Article  Google Scholar 

  • Ching, W., Siu, T., & Li, L. (2007). Pricing exotic options under a higher-order hidden Markov model. Journal of Applied Mathematics and Decision Sciences, 18014, 1–15.

    Article  Google Scholar 

  • Cox, J., Ingersoll, J., & Ross, S. (1985). A theory of the term structure of interest rates. Econometrica, 53(2), 385–407.

    Article  Google Scholar 

  • Dajcman, S. (2012). Time-varying long-range dependence in stock market returns and financial market disruptions—a case of eight European countries. Applied Economics Letters, 19, 953–957.

    Article  Google Scholar 

  • Duan, J., & Jacobs, K. (1996). A simple long-memory equilibrium interest rate model. Economics Letters, 53(3), 317–321.

    Article  Google Scholar 

  • Elliott, R., Hunter, W., & Jamieson, B. (2001). Financial signal processing: A self-calibrating model. International Journal of Theoretical and Applied Finance, 4, 567–584.

    Article  Google Scholar 

  • Elliott, R., & Mamon, R. (2002). An interest rate model with a Markovian mean-reverting level. Quantitative Finance, 2, 454–458.

    Article  Google Scholar 

  • Elliott, R., Moore, J., & Aggoun, L. (1995). Hidden Markov models: Estimation and control. New York: Springer.

    Google Scholar 

  • Erlwein, C., & Mamon, R. (2009). An online estimation scheme for a Hull–White model with HMM-driven parameters. Statistical Methods and Applications, 18(1), 87–107.

    Article  Google Scholar 

  • Erlwein, C., Mamon, R., & Davison, M. (2011). An examination of HMM-based investment strategies for asset allocation. Applied Stochastic Models in Business and Industry, 27, 204–221.

    Article  Google Scholar 

  • Filipović, D. (2009). Term structure models. Heidelberg: Springer.

    Book  Google Scholar 

  • Garthwaite, P., Jolliffe, I., & Jones, B. (2002). Statistical inference (2nd ed.). Oxford: Oxford Science Publication.

    Google Scholar 

  • Guidolin, M., & Timmermann, A. (2009). Forecasts of US short-term interest rates: A flexible forecast combination approach. Journal of Econometrics, 150(2), 297–311.

    Article  Google Scholar 

  • Hamilton, J. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57(2), 357–84.

    Article  Google Scholar 

  • Hardy, M. (2001). A regime-switching model of long-term stock returns. North American Actuarial Journal, 5(2), 41–53.

    Article  Google Scholar 

  • Holmes, M., Dutu, R., & Cui, X. (2009). Real interest rates, inflation and the open economy: A regime-switching perspective on Australia and New Zealand. International Review of Economics and Finance, 18(2), 351–360.

    Article  Google Scholar 

  • Hull, J., & White, A. (1990). Pricing interest-rate-derivative securities. Review of Financial Studies, 3(4), 573–92.

    Article  Google Scholar 

  • Hunt, J., & Devolder, P. (2011). Semi-Markov regime switching interest rate models and minimal entropy measure. Physica A (Statistical Mechanics and its Applications), 390, 3767–3781.

    Article  Google Scholar 

  • Hurst, H. (1951). Long-term storage capacity of reservoirs. American Society of Civil Engineers, 116, 770–808.

    Google Scholar 

  • Landén, C. (2000). Bond pricing in a hidden Markov model of the short rate. Finance and Stochastics, 4(4), 371–389.

    Article  Google Scholar 

  • Maheu, J. (2005). Can GARCH models capture long-range dependence? Studies in Nonlinear Dynamics and Econometrics, 9(4), 1.

    Google Scholar 

  • Mandelbrot, B. (1971). When can price be arbitraged efficiently? A limit to the validity of the random walk and martingale models. Review of Economics and Statistics, 53(3), 225–36.

    Article  Google Scholar 

  • Matteo, T. (2007). Multi-scaling in finance. Quantitative Finance, 7(1), 21–36.

    Article  Google Scholar 

  • McCarthy, J., Pantalone, C., & Li, H. (2009). Investigating long memory in yield spreads. Investigating long memory in yield spreads. Journal of Fixed Income, 19(1), 73–81.

    Article  Google Scholar 

  • Meligkotsidou, L., & Dellaportas, P. (2011). Forecasting with non-homogeneous hidden Markov models. Statistics and Computing, 21, 439–449.

    Article  Google Scholar 

  • Nieh, C., Wu, S., & Zen, Y. (2010). Regime shifts and the term structure of interest rates. In C. Lee & J. Lee (Eds.), Handbook of quantitative finance and risk management (pp. 1121–1134). Berlin: Springer.

    Chapter  Google Scholar 

  • Siu, T., Ching, W., Fung, E., & Ng, M. (2005). Extracting information from spot interest rates and credit ratings using double higher-order hidden Markov models. Computational Economics, 26, 69–102.

    Article  Google Scholar 

  • Siu, T., Ching, W., Fung, E., Ng, M., & Li, X. (2009). A high-order Markov-switching model for risk measurement. Computers and Mathematics with Applications, 58, 1–10.

    Article  Google Scholar 

  • Smith, D. (2002). Markov-switching and stochastic volatility diffusion models of short-term interest rates. Journal of Business and Economic Statistics, 20(2), 183–197.

    Article  Google Scholar 

  • Solberg, J. (2009). Modelling random processes for engineers and managers. New Jersey: Wiley.

    Google Scholar 

  • Startz, R., & Tsang, K. (2010). An unobserved components model of the yield curve. Journal of Money, Credit and Banking, 42(8), 1613–1640.

    Article  Google Scholar 

  • Taqqu, M., Teverovsky, V., & Willinger, W. (1995). Estimators for long-range dependence: An empirical study. Fractals, 3, 785–798.

    Article  Google Scholar 

  • Vasicek, O. (1977). An equilibrium characterisation of the term structure. Journal of Financial Economics, 5(2), 177–188.

    Article  Google Scholar 

  • Wu, C. (1983). On the convergence properties of the EM algorithm. Annals of Statistics, 11, 95–103.

    Article  Google Scholar 

  • Xi, X. (2012). Further applications of higher-order Markov chains and developments in regime-switching models. PhD Thesis, University of Western Ontario, London.

  • Xi, X., & Mamon, R. (2011). Parameter estimation of an asset price model driven by a weak hidden Markov chain. Economic Modelling, 28(1–2), 36–46.

    Article  Google Scholar 

  • Zhou, N., & Mamon, R. (2012). An accessible implementation of interest rate models with Markov switching. Expert Systems with Applications, 39(5), 4679–4689.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogemar Mamon.

Appendices

Appendix A: Proof of Proposition 3.1

1.1 Proof of Eq. (18)

From the definition of \(q_k\) in Eq. (14) we have

$$\begin{aligned} q_{k+1}&= {\bar{E}}[\Lambda _{k+1}\xi (\mathbf{x }{k+1},\mathbf{x }_k)|\fancyscript{Y}_{k+1}]\\&= {\bar{E}}[\Lambda _k\lambda _{k+1}{\varvec{\Pi }}\xi (\mathbf{x }_k,\mathbf{x }_{k-1})|\fancyscript{Y}_{k+1}] \\&= \sum _{l,m,v=1}^Nb^m_{k+1}{\bar{E}}[\Lambda _k\langle {\varvec{\Pi }}\mathbf{e }_{mv},\mathbf{e }_{lm}\rangle \langle \xi (\mathbf{x }_k,\mathbf{x }_{k-1}),\mathbf{e }_{mv}\rangle |\fancyscript{Y}_k]\mathbf{e }_{lm}\\&= \sum _{l,m,v=1}^Nb^m_{k+1}\langle {\varvec{\Pi }}\mathbf{e }_{mv},\mathbf{e }_{lm}\rangle \langle \mathbf{q }_k,\mathbf{e }_{mv}\rangle \mathbf{e }_{lm}\\&= \mathbf{B }_{k+1}{\varvec{\Pi }}\mathbf{q }_k. \end{aligned}$$

1.2 Proof of Eq. (19)

Using the expressions in (10) and (11), and the definition in (19), we obtain

$$\begin{aligned}&\gamma \big (J^{rst}\xi (\mathbf{x }_{k+1},\mathbf{x }_k)\big )_{k+1}\\&\quad ={\bar{E}}[\Lambda _{k+1}J_{k+1}^{rst}\xi (\mathbf{x }_{k+1},\mathbf{x }_k)|\fancyscript{Y}_{k+1}]\\&\quad ={\bar{E}}[\Lambda _k\lambda _{k+1}(J_k^{rst}+\langle \mathbf{x }_{k+1},\mathbf{e }_r\rangle \langle \mathbf{x }_k, \mathbf{e }_s\rangle \langle \mathbf{x }_{k-1},\mathbf{e }_t\rangle ){\varvec{\Pi }}\xi (\mathbf{x }_k,\mathbf{x }_{k-1})|\fancyscript{Y}_{k+1}]\\&\quad =\sum _{l,m,v=1}^Nb^m_{k+1}{\bar{E}}[\Lambda _kJ^{rst}_k\langle {\varvec{\Pi }}\mathbf{e }_{mv}, \mathbf{e }_{lm}\rangle \langle \xi (\mathbf{x }_k,\mathbf{x }_{k-1}),\mathbf{e }_{mv}\rangle |\fancyscript{Y}_k]\mathbf{e }_{lm}\\&\quad \quad +b^r_{k+1}\bar{E}[\Lambda _k\langle {\varvec{\Pi }}\mathbf{e }_{st},\mathbf{e }_{rs}\rangle \langle \xi (\mathbf{x }_k,\mathbf{x }_{k-1}), \mathbf{e }_{rs}\rangle |\fancyscript{Y}_k]\mathbf{e }_{rs}\\&\quad =\sum _{l,m,v=1}^Nb^m_{k+1}\langle {\varvec{\Pi }}\mathbf{e }_{mv},\mathbf{e }_{lm}\rangle \langle \gamma (J^{rst}_k\xi (\mathbf{x }_k, \mathbf{x }_{k-1}))_k,\mathbf{e }_{mv}\rangle \mathbf{e }_{lm}\\&\qquad +b^r_{k+1}\langle {\varvec{\Pi }}\mathbf{e }_{st},\mathbf{e }_{rs}\rangle \langle \mathbf{q }_k,\mathbf{e }_{st} \rangle \mathbf{e }_{rs}\\&\quad =\mathbf B _{k+1}{\varvec{\Pi }}\gamma (J^{rst}\xi (\mathbf{x }_k,\mathbf{x }_{k-1}))_k+b^r_{k+1}\langle {\varvec{\Pi }}\mathbf{e }_{st},\mathbf{e }_{rs} \rangle \langle \mathbf{q }_k,\mathbf{e }_{st}\rangle \mathbf{e }_{rs}. \end{aligned}$$

1.3 Proof of Eq. (20)

Using the expressions in (10) and (11), and the definition in (20), we get

$$\begin{aligned}&\gamma (O^{rs}\xi (\mathbf{x }_{k+1},\mathbf{x }_k))_{k+1}\\&\quad =\bar{E}[\Lambda _{k+1}O_k^{rs}\xi (\mathbf{x }_{k+1},\mathbf{x }_k)|\fancyscript{Y}_{k+1}]\\&\quad =\bar{E}[\Lambda _k\lambda _{k+1}(O_k^{rs}+\langle \mathbf{x }_k,\mathbf{e }_r\rangle \langle \mathbf{x }_{k-1},\mathbf{e }_s\rangle ) \xi (\mathbf{x }_{k+1},\mathbf{x }_k)|\fancyscript{Y}_{k+1}]\\&\quad =\sum _{l,m,v=1}^Nb^m_{k+1}{\bar{E}}[\Lambda _kO^{rs}_k\langle {\varvec{\Pi }}\mathbf{e }_{mv},\mathbf{e }_{lm}\rangle \langle \xi (\mathbf{x }_k,\mathbf{x }_{k-1}),\mathbf{e }_{mv}\rangle |\fancyscript{Y}_k]\mathbf{e }_{lm}\\&\qquad +\sum _{l=1}^Nb^r_{k+1}\bar{E}[\Lambda _k\langle {\varvec{\Pi }}\mathbf{e }_{rs},\mathbf{e }_{lr}\rangle \langle \xi (\mathbf{x }_k,\mathbf{x }_{k-1}),\mathbf{e }_{rs}\rangle |\fancyscript{Y}_k]\mathbf{e }_{lr}\\&\quad =\sum _{l,m,v=1}^Nb^m_{k+1}\langle {\varvec{\Pi }}\mathbf{e }_{mv},\mathbf{e }_{lm}\rangle \langle \gamma (O^{rs}_k\xi (\mathbf{x }_k,\mathbf{x }_{k-1}))_k,\mathbf{e }_{mv}\rangle \mathbf{e }_{lm}\\&\qquad +b^r_{k+1}\sum _{l=1}^N\langle {\varvec{\Pi }}\mathbf{e }_{rs},\mathbf{e }_{lr}\rangle \langle \mathbf{q }_k,\mathbf{e }_{rs}\rangle \mathbf{e }_{lr}\\&\quad =\mathbf B _{k+1}{\varvec{\Pi }}\gamma (O^{rs}\xi (\mathbf{x }_k,\mathbf{x }_{k-1}))_k+b^r_{k+1}\langle \mathbf{q }_k,\mathbf{e }_{rs}\rangle {\varvec{\Pi }}\mathbf{e }_{rs}. \end{aligned}$$

1.4 Proof of Eq. (21)

From the expressions in (10) and (11), and the definition in (21), we have

$$\begin{aligned}&\gamma (O^r\xi (\mathbf{x }_{k+1},\mathbf{x }_k))_{k+1}\\&\quad =\bar{E}[\Lambda _{k+1}O_{k+1}^r\xi (\mathbf{x }_{k+1},\mathbf{x }_k)|\fancyscript{Y}_{k+1}]\\&\quad =\bar{E}[\Lambda _k\lambda _{k+1}(O_k^r+\langle \mathbf{x }_k,\mathbf{e }_r\rangle ){\varvec{\Pi }}\xi (\mathbf{x }_{k}, \mathbf{x }_{k-1})|\fancyscript{Y}_{k+1}]\\&\quad =\sum _{l,m,v=1}^Nb^m_{k+1}{\bar{E}}[\Lambda _kO^{r}_k\langle {\varvec{\Pi }}\mathbf{e }_{mv},\mathbf{e }_{lm}\rangle \langle \xi (\mathbf{x }_k,\mathbf{x }_{k-1}),\mathbf{e }_{mv}\rangle |\fancyscript{Y}_k]\mathbf{e }_{lm}\\&\qquad +\sum _{l,m=1}^Nb^r_{k+1}{\bar{E}}[\Lambda _k\langle {\varvec{\Pi }}\mathbf{e }_{rm},\mathbf{e }_{lr}\rangle \langle \xi ( \mathbf{x }_{k},\mathbf{x }_{k-1}),\mathbf{e }_{rm}\rangle |\fancyscript{Y}_k]\mathbf{e }_{lr}\\&\quad =\sum _{l,m,v=1}^Nb^m_{k+1}\langle {\varvec{\Pi }}\mathbf{e }_{mv},\mathbf{e }_{lm}\rangle \langle \gamma (O^{r}_k\xi (\mathbf{x }_k, \mathbf{x }_{k-1}))_k,\mathbf{e }_{mv}\rangle \mathbf{e }_{lm}\\&\qquad +\sum _{l,m=1}^Nb^r_{k+1}\langle {\varvec{\Pi }}\mathbf{e }_{rm},\mathbf{e }_{lr}\rangle \langle \mathbf{q }_k,\mathbf{e }_{rm}\rangle \mathbf{e }_{lr}\\&\quad =\mathbf B _{k+1}{\varvec{\Pi }}\gamma (O^{r}\xi (\mathbf{x }_k,\mathbf{x }_{k-1}))_k+b^r_{k+1}\mathbf{V }_r{\varvec{\Pi }}\mathbf{q }_k. \end{aligned}$$

The proof of the recursive formulae (22) follows a similar argument supporting Eq. (21) by using the definition of \(\lambda _l\) and evaluating the resulting conditional expectation under \(\bar{P}\) .

Appendix B: Proof of Proposition 3.2

1.1 Proof of Eq. (24)

To derive an optimal estimate for \(a_{rst}\) we consider a new measure \(P_{\hat{\theta }}\), which is defined in (23). This means that

$$\begin{aligned} \log \left( \frac{dP_{\hat{\theta }}}{dP_{\theta }}\right)&= \sum ^k_{l=2} \sum ^N_{r,s,t=1}[\log (\hat{a}_{rst})-\log (a_{rst})]\langle \mathbf x _l, \mathbf{e }_r\rangle \langle \mathbf x _{l-1},\mathbf{e }_s\rangle \langle \mathbf x _{l-2},\mathbf{e }_t\rangle \nonumber \\&= \sum ^N_{r,s,t=1}\log {\hat{a}_{rst}}J_k^{rst}+\text {R}, \end{aligned}$$
(41)

where R is independent of \(\hat{a}_{rst}\). Taking expectation of (41), we have

$$\begin{aligned} E\left[ \log \left( \frac{dP_{\hat{\theta }}}{dP_\theta }\right) \Big |\fancyscript{Y}_k\right] =\sum ^N_{r,s,t=1}\log {\hat{a}_{rst}}\hat{J}_k^{rst}+\text {R}. \end{aligned}$$
(42)

The optimal estimate of \(a_{rst}\) is the value that maximises the log-likelihood (41) subject to the constraint \(\sum ^N_{r=1}\hat{a}_{rst}=1\). We introduce the Lagrange multiplier \(\omega \) via the function

$$\begin{aligned} L(\hat{a}_{rst},\omega )=\sum ^N_{r,s,t=1}\log {\hat{a}_{rst}}\hat{J}_k^{rst} +\omega (\sum ^N_{r=1}\hat{a}_{rst}-1)+\text {R}. \end{aligned}$$
(43)

Differentiating (43) with respect to \(\hat{a}_{rst}\) and \(\omega \), and equating the derivatives to 0, we get

$$\begin{aligned} \frac{1}{\hat{a}_{rst}}\hat{J}_k^{rst}+\omega =0 \end{aligned}$$
(44)

and

$$\begin{aligned} \sum ^N_{r=1}\hat{a}_{rst}=1. \end{aligned}$$
(45)

Rewriting (44) yields

$$\begin{aligned} \hat{a}_{rst}=-\frac{\hat{J}_k^{rst}}{\omega }. \end{aligned}$$
(46)

Consequently, from (45) and (46) we have

$$\begin{aligned} \sum ^N_{r=1}\hat{a}_{rst}=-\sum ^N_{r=1}\frac{\hat{J}_k^{rst}}{\omega } =-\frac{\hat{O}^{st}}{\omega }=1. \end{aligned}$$

Hence, the Lagrange multiplier has the value \(\omega =-\hat{O}^{st}\). From (46), the optimal estimates for \(\hat{a}_{rst}\) is

$$\begin{aligned} \hat{a}_{rst}=\frac{\hat{J}_k^{rst}}{\hat{O}^{st}}, \end{aligned}$$

which is what we wanted to show in (24).

1.2 Proof of Eq. (25)

Given the parameter \({\varvec{\alpha }}=(\alpha _1,\alpha _2,\ldots ,\alpha _N)^\top \in \mathbb R ^N\), we wish to update the estimates to \(\hat{{\varvec{\alpha }}}=(\hat{\alpha }_1,\hat{\alpha }_2,\ldots ,\hat{\alpha }_N)^\top \in \mathbb R ^N\). Consider a new measure \(P_{\hat{\theta }}\) defined by

$$\begin{aligned} \frac{dP_{\hat{\theta }}}{dP_{\theta }}\Big |_{\fancyscript{Y}_k} =\Lambda _k^{\alpha }=\prod ^k_{l=1} \lambda _l(\hat{\alpha }_{l-1},y_l), \end{aligned}$$

where

$$\begin{aligned}&\lambda _l(\hat{\alpha }_{l-1},y_l)\\&\quad =\exp \left\{ \!-\!\frac{(y_l\!-\!\hat{\alpha }(\mathbf{x }_{l-1})y_{l-1} \!-\!\eta (\mathbf{x }_{l-1}))^2\!-\!(y_l-\alpha (\mathbf{x }_{l-1}) y_{l-1} \!-\!\eta (\mathbf{x }_{l-1}))^2}{2\sigma (\mathbf{x }_{l-1})^2}\right\} . \end{aligned}$$

Therefore, we have

$$\begin{aligned}&E\left[ \log \frac{dP_{\hat{\theta }}}{dP_\theta }\Big |\fancyscript{Y}_k\right] = E\left[ \sum ^k_{l=1}\log \lambda _l(\alpha _{l-1},y_l)\Big |\fancyscript{Y}_k\right] \nonumber \\&\quad = E\left[ \sum ^k_{l=1} -\!\frac{\left( \hat{\alpha } (\mathbf{x }_{l-1})^2 y^2_{l-1} -2\hat{\alpha }(\mathbf{x }_{l-1})y_{l-1}y_l +\hat{\alpha }(\mathbf{x }_{l-1})\eta (\mathbf{x }_{l-1})y_{l-1} \right) }{2\sigma (\mathbf{x }_{l-1})^2}+\text {R}\Big |\fancyscript{Y}_k\right] \nonumber \\&\quad =\sum ^k_{l=1}E\left[ \sum ^N_{r=1} -\frac{\langle \mathbf{x }_{k-1},\mathbf{e }_r\rangle }{2\sigma _r^2}\left( \hat{\alpha }_r^2 y^2_{l-1} -2\hat{\alpha }_ry_{l-1}y_l+\hat{\alpha }_r\eta _ry_{l-1}\right) \Big |\fancyscript{Y}_k\right] +\text {R}\nonumber \\&\quad =\sum ^N_{r=1}E\left[ -\frac{1}{2\sigma _r^2}\left( \hat{\alpha }_r^2 T^r_k(y^2_{k-1})-2\hat{\alpha }_rT^r_k(y_{k-1}y_k)+\hat{\alpha }_r\eta _rT^r_k(y_{k-1})\right) \Big |\fancyscript{Y}_k\right] +\text {R}\nonumber \\&\quad =\sum ^N_{r=1}-\frac{1}{2\sigma _r^2}\left( \hat{\alpha }_r^2 \hat{T}^r_k(y^2_{k-1})-2\hat{\alpha }_r\hat{T}^r_k(y_{k-1}y_k)+\hat{\alpha }_r\eta _r\hat{T}^r_k(y_{k-1})\right) +\text {R}, \end{aligned}$$
(47)

where R does not involve \(\hat{\alpha }\). We differentiate the above expression and set its derivative to 0. This gives the optimal choice for \(\hat{\alpha }_i\) given the observation data \(y_k\). We get

$$\begin{aligned} \hat{\alpha }_r=\frac{\hat{T}^r_k(y_{k-1},y_k) -\eta ^r\hat{T}^r_k(y_{k-1})}{\hat{T}^r_k(y_{k-1}^2)}. \end{aligned}$$

1.3 Proof of Eq. (26)

Given the parameter \({\varvec{\eta }}=(\eta _1,\eta _2,\ldots ,\eta _N)^\top \in \mathbb R ^N\), we wish to obtain the update \(\hat{{\varvec{\eta }}}=(\hat{\eta }_1,\hat{\eta }_2,\ldots ,\hat{\eta }_N)^\top \in \mathbb R ^N\). Consider a new measure \(P_{\hat{\theta }}\) defined by

$$\begin{aligned} \frac{dP_{\hat{{\varvec{\theta }}}}}{dP_{{\varvec{\theta }}}}\Big |_{\fancyscript{Y}_k}=\Lambda _k^{\alpha } =\prod ^k_{l=1}\lambda _l(\hat{\eta }_{l-1},y_l), \end{aligned}$$

where

$$\begin{aligned}&\lambda _l(\hat{\eta }_{l-1},y_l)\\&\quad =\exp \left\{ -\frac{(y_l -\eta (\mathbf{x }_{l-1})y_{l-1} -\hat{\eta }(\mathbf{x }_{l-1}))^2-(y_l-\alpha (\mathbf{x }_{l-1}) y_{l-1} -\eta (\mathbf{x }_{l-1}))^2}{2\sigma (\mathbf{x }_{l-1})^2}\right\} . \end{aligned}$$

Therefore, we have

$$\begin{aligned}&E\left[ \log \frac{dP_{\hat{\theta }}}{dP_{\theta }}\Big |\fancyscript{Y}_k\right] = E\left[ \sum ^k_{l=1}\log \lambda _l(\alpha _{l-1},y_l)\Big |\fancyscript{Y}_k\right] \nonumber \\&\quad =E\left[ \sum ^k_{l=1} -\frac{\left( \hat{\eta }(\mathbf{x }_{l-1})^2-2\hat{\eta }(\mathbf{x }_{l-1})y_l+2\alpha (\mathbf{x }_{l-1})\hat{\eta }(\mathbf{x }_{l-1})y_{l-1} \right) }{2\sigma (\mathbf{x }_{l-1})^2} +\text {R}\Big |\fancyscript{Y}_k\right] \nonumber \\&\quad =\sum ^k_{l=1}E\left[ \sum ^N_{r=1} -\frac{\langle \mathbf{x }_{k-1},\mathbf{e }_r\rangle }{2\sigma _r^2}\left( \hat{\eta }_r^2-2\hat{\eta }_ry_l+2\alpha _r\hat{\eta }_ry_{l-1} \right) \Big |\fancyscript{Y}_k\right] +\text {R}\nonumber \\&\quad =\sum ^N_{r=1}E\left[ -\frac{1}{2\sigma _r^2}\left( \hat{\eta }_r^2O^r_k-2\hat{\eta }_rT^r_k(y_k)+2\alpha _r\hat{\eta }_rT^r_k(y_{k-1}) \right) \Big |\fancyscript{Y}_k\right] +\text {R}\nonumber \\&\quad =\sum ^N_{r=1}-\frac{1}{2\sigma _r^2}\left( \hat{\eta }_r^2\hat{O}^r_k-2\hat{\eta }_r\hat{T}^r_k(y_k)+2\alpha _r\hat{\eta }_r\hat{T}^r_k(y_{k-1}) \right) +\text {R}, \end{aligned}$$
(48)

where R does not involve \(\hat{\eta }\). We differentiate the above expression and set its derivative to 0. This gives the optimal choice for \(\hat{\eta }_i\) given the observation data \(y_k\) . We obtain

$$\begin{aligned} \hat{\eta }_r=\frac{\hat{T}^r_k(y_k) -\alpha ^r\hat{T}^r_k(y_{k-1})}{\hat{O}^r_k}. \end{aligned}$$

1.4 Proof of Eq. (27)

To perform a change from \({\varvec{\sigma }}=(\sigma _1,\sigma _2, \ldots ,\sigma _N)^\top \in \mathbb R ^N\) to \(\hat{{\varvec{\sigma }}}=(\hat{\sigma }_1,\hat{\sigma }_2,\ldots ,\hat{\sigma }_N)^\top \in \mathbb R ^N\), we define the Radon–Nikodým derivative

$$\begin{aligned} \frac{dP_{\hat{\theta }}}{dP_{\theta }}\Big |_{\fancyscript{Y}_k}=\Lambda _k^{\sigma } =\prod ^k_{l=1}\lambda _l(\hat{\sigma }_{l-1}, y_l), \end{aligned}$$

where

$$\begin{aligned} \lambda _l(\hat{\sigma }_{l-1}, y_l)&= \frac{\sigma (\mathbf{x }_{l-1})}{\hat{\sigma }(\mathbf{x }_{l-1})} \exp \left\{ \frac{(y_l-\alpha (\mathbf{x }_{l-1}) y_{l-1}-\eta (\mathbf{x }_{l-1}))^2}{2\sigma (\mathbf{x }_{l-1})^2}\right. \\&\quad \left. -\frac{(y_l-\alpha (\mathbf{x }_{l-1}) y_{l-1}-\eta (\mathbf{x }_{l-1}))^2}{2\hat{\sigma }(\mathbf{x }_{l-1})^2}\right\} . \end{aligned}$$

Hence,

$$\begin{aligned}&E\left[ \log \left( \frac{dP_{\hat{\theta }}}{dP_\theta }\right) \Big |\fancyscript{Y}_k\right] \nonumber \\&\quad =E\left[ \sum ^k_{l=1}-\log \hat{\sigma }(\mathbf{x }_{l-1}) -\frac{\left[ y_l-\alpha (\mathbf{x }_{l-1}) y_{l-1}-\eta (\mathbf{x }_{l-1})\right] ^2}{2\hat{\sigma }(\mathbf{x }_{l-1})^2}\Big |\fancyscript{Y}_k\right] +\text {R}\nonumber \\&\quad =E\left[ -\sum ^k_{l=1}\sum ^N_{r=1}\langle \mathbf{x }_{l-1}, \mathbf{e }_r\rangle \right. \nonumber \\&\quad \quad \left. \left( \log \hat{\sigma }_r\!+\!\frac{y_l^2+\alpha _r^2 y^2_{l-1} +\eta ^2_rO^r_k-2\alpha _ry_{l-1}y_l-2\eta _ry_l+2\eta _r\alpha _ry_{l-1}}{2\hat{\sigma }_r^2}\right) \Big |\fancyscript{Y}_k\right] \!+\!\text {R}\nonumber \\&\quad =\sum ^N_{r=1}\left( -\log \hat{\sigma }_r\hat{O}^r_k\right. \nonumber \\&\quad \left. \!-\!\frac{\hat{T}^r_k(y_k^2)\!+\!\alpha _r^2 \hat{T}^r_k(y^2_{k-1}) \!+\!\eta ^2_r\hat{O}^r_k\!-\!2\alpha _r \hat{T}^r_k(y_{k-1}y_k) \!-\!2\eta _r \hat{T}^r_k(y_k)\!+\!2\eta _r\alpha _r\hat{T}^r_k(y_{k-1})}{2\hat{\sigma }_r^2}\right) \nonumber \\&\quad \quad +\text {R} , \end{aligned}$$
(49)

where R is independent of \(\hat{\sigma }\). We differentiate the above expression in \(\hat{\sigma }_r\) and equate the result to zero. Solving the equation we get the optimal choice of \(\hat{\sigma }^2\), which is

$$\begin{aligned} \hat{\sigma }^2_r\!=\!\frac{\hat{T}^r_k(y^2_k)\!+\!\alpha ^2_r\hat{T}^r_k(y_{k-1})\!+\! \eta ^2_r\hat{O}^r_k\!-\!2\alpha _r\hat{T}^r_k(y_ky_{k-1})\!-\!2\eta _r\hat{T}^r_k(y_k) \!+\!2\eta _r\alpha _r\hat{T}^r_k(y_{k-1})}{\hat{O}^r_k} \end{aligned}$$

and this agrees with Eq. (27).

Appendix C: Proof of Eq. (36)

We use mathematical induction to prove (36) for \(h\ge 3\). Following Eqs. (34) and (35), we have, when \(h=3\),

$$\begin{aligned} E[y_{k+3}|{\fancyscript{Y}}_k]&= \langle {\varvec{\alpha }},\mathbf{p }_{k+2}\rangle E[y_{k+2}|{\fancyscript{Y}}_k]+\langle {\varvec{\eta }},\mathbf{p }_{k+2}\rangle \\&= \langle {\varvec{\alpha }},\mathbf{p }_{k+2}\rangle \left( \langle {\varvec{\alpha }},\mathbf{p }_{k+1}\rangle E[y_{k+1}|{\fancyscript{Y}}_k] +\langle {\varvec{\eta }},\mathbf{p }_{k+1}\rangle \right) +\langle {\varvec{\eta }},\mathbf{p }_{k+2}\rangle \\&= \prod ^2_{i=1}\langle {\varvec{\alpha }},\mathbf{A }{\varvec{\Pi }}^{i-1}\mathbf{p }_k\rangle (\langle {\varvec{\alpha }},\hat{\mathbf{x }}_k\rangle y_k +\langle {\varvec{\eta }},\hat{\mathbf{x }}_k\rangle )\\&+\langle {\varvec{\alpha }},\mathbf{A }{\varvec{\Pi }}\mathbf{p }_k\rangle \langle {\varvec{\eta }},\mathbf{A }\mathbf{p }_k\rangle +\langle {\varvec{\eta }},\mathbf{A }{\varvec{\Pi }}\mathbf{p }_k\rangle . \end{aligned}$$

Therefore, the statement is true for \(h=3\). Assume the statement is true for \(h=m\), i.e.,

$$\begin{aligned} E[y_{k+m}|{\fancyscript{Y}}_k]&= \prod ^{m-1}_{i=1}\langle {\varvec{\alpha }},\mathbf{A }{\varvec{\Pi }}^{i-1}\mathbf{p }_k\rangle \left( \langle {\varvec{\alpha }},\hat{\mathbf{x }}_k\rangle y_k+\langle {\varvec{\eta }},\hat{\mathbf{x }}_k\rangle \right) \nonumber \\&~~~~+\sum _{i=1}^{m-2}\prod _{j=i}^{m-2}\langle {\varvec{\alpha }},\mathbf{A }{\varvec{\Pi }}^{j}\mathbf{p }_k\rangle \langle {\varvec{\eta }},\mathbf{A }{\varvec{\Pi }}^{i-1} \mathbf{p }_k\rangle +\langle {\varvec{\eta }},\mathbf{A }{\varvec{\Pi }}^{m-2}\mathbf{p }_k\rangle . \end{aligned}$$

We demonstrate that Eq. (36) is true for \(h=m+1\).

$$\begin{aligned}&E[y_{k+m+1}|{\fancyscript{Y}}_k]\\&\quad =\langle {\varvec{\alpha }},\mathbf{p }_{k+m}\rangle E[y_{k+m}|{\fancyscript{Y}}_k]+\langle {\varvec{\eta }},\mathbf{p }_{k+m}\rangle \\&\quad =\langle {\varvec{\alpha }},\mathbf{A }{\varvec{\Pi }}^{m-1}\mathbf{p }_k\rangle \left( \prod ^{m-1}_{i=1}\langle {\varvec{\alpha }},\mathbf{A }{\varvec{\Pi }}^{i-1}\mathbf{p }_k\rangle \left( \langle {\varvec{\alpha }},\hat{\mathbf{x }}_k\rangle y_k+\langle {\varvec{\eta }},\hat{\mathbf{x }}_k\rangle \right) \right. \\&\qquad \quad \left. +\sum _{i=1}^{m-2}\prod _{j=i}^{m-2}\langle {\varvec{\alpha }},\mathbf{A }{\varvec{\Pi }}^{j}\mathbf{p }_k\rangle \langle {\varvec{\eta }},\mathbf{A }{\varvec{\Pi }}^{i-1}\mathbf{p }_k\rangle \right) \\&\qquad +\langle {\varvec{\alpha }},\mathbf{A }{\varvec{\Pi }}^{m-1}\mathbf{p }_k\rangle \langle {\varvec{\eta }},\mathbf{A }{\varvec{\Pi }}^{m-2}\mathbf{p }_k\rangle +\langle {\varvec{\eta }},\mathbf{A }{\varvec{\Pi }}^{m-1}\mathbf{p }_k\rangle \\&\quad =\prod ^{m}_{i=1}\langle {\varvec{\alpha }},\mathbf{A }{\varvec{\Pi }}^{i-1}\mathbf{p }_k\rangle \left( \langle {\varvec{\alpha }},\hat{\mathbf{x }}_k\rangle y_k +\langle {\varvec{\eta }},\hat{\mathbf{x }}_k\rangle \right) +\sum _{i=1}^{m-2}\prod _{j=i}^{m-1} \langle {\varvec{\alpha }},\mathbf{A }{\varvec{\Pi }}^{j}\mathbf{p }_k\rangle \langle {\varvec{\eta }},\mathbf{A }{\varvec{\Pi }}^{i-1}\mathbf{p }_k\rangle \\&\qquad +\langle {\varvec{\alpha }},\mathbf{A }{\varvec{\Pi }}^{m-1}\mathbf{p }_k\rangle \langle {\varvec{\eta }},\mathbf{A }{\varvec{\Pi }}^{m-2}\mathbf{p }_k\rangle +\langle {\varvec{\eta }},\mathbf{A }{\varvec{\Pi }}^{m-1}\mathbf{p }_k\rangle \\&\quad =\prod ^{m}_{i=1}\langle {\varvec{\alpha }},\mathbf{A }{\varvec{\Pi }}^{i-1}\mathbf{p }_k\rangle \left( \langle {\varvec{\alpha }},\hat{\mathbf{x }}_k\rangle y_k +\langle {\varvec{\eta }},\hat{\mathbf{x }}_k\rangle \right) +\sum _{i=1}^{m-1}\prod _{j=i}^{m-1}\langle {\varvec{\alpha }},\mathbf{A }{\varvec{\Pi }}^{j} \mathbf{p }_k\rangle \langle {\varvec{\eta }},\mathbf{A }{\varvec{\Pi }}^{i-1}\mathbf{p }_k\rangle \\&\quad \quad +\langle {\varvec{\eta }},\mathbf{A }{\varvec{\Pi }}^{m-1}\mathbf{p }_k\rangle . \end{aligned}$$

Therefore, by the principle of mathematical induction, the statement in Eq. (36) is true for \(h\ge 3\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xi, X., Mamon, R. Capturing the Regime-Switching and Memory Properties of Interest Rates. Comput Econ 44, 307–337 (2014). https://doi.org/10.1007/s10614-013-9396-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-013-9396-5

Keywords

JEL Classification

Navigation