Skip to main content
Log in

Stochastic Evolutionary Selection in Heterogeneous Populations for Asymmetric Games

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

Although a large and growing literature has emerged to study evolutionary selection in finite populations recently, there is rare consideration on the effects of learning mechanisms’ heterogeneity. Based on a selection-mutation Moran process, this paper makes an attempt to construct and analyze a stochastic evolutionary game dynamic in two heterogeneous populations. Precisely speaking, one population is clever in the sense that its every individual mutates according to a pairwise comparison rule while the other is simple since each of its individuals mutates completely randomly. As a criterion of equilibrium selection, related stationary distributions of strategies are then analytically derived under weak selection. Besides, some novel findings can be obtained due to the explicit consideration of rational behavior. For example, it turns out that for coordination games the introduction of the rationality may inhibit the clever population from selecting the risk-dominant strategy, which is inconsistent with our common sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antal, T., & Scheuring, I. (2006). Fixation of strategies for an evolutionary game in finite populations. Bulletin of Mathematical Biology, 68, 1923–1944.

    Article  Google Scholar 

  • Ania, A. B. (2008). Evolutionary stability and Nash equilibrium in finite populations, with an application to price competition. Journal of Economic Behavior and Organization, 65, 472–488.

    Article  Google Scholar 

  • Allen, B., & Rosenbloom, D. I. S. (2012). Mutation rate evolution in replicator dynamics. Bulletin of Mathematical Biology, 74, 2650–2675.

    Google Scholar 

  • Alpcan, T., & Basar, T. (2010). Network security: A decision and game-theoretic approach. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Ba, S., Whinston, A. B., & Zhang, H. (2000). The dynamics of the electronic market: An evolutionary game approach. Information Systems Frontiers, 2, 31–40.

    Article  Google Scholar 

  • Bomze, I. M., & Burger, R. (1995). Stability by mutation in evolutionary games. Games and Economic Behavior, 11, 146–172.

    Article  Google Scholar 

  • Brown, G. W., & Von Neumann, J. (1950). Solutions of games by differential equations. Annals of Mathematics Studies, 24, 73–79.

    Google Scholar 

  • Cerqueti, R., Correani, L., & Garofalo, G. (2013). Economic interactions and social tolerance: A dynamic perspective. Economics Letters, 120, 458–463.

    Article  Google Scholar 

  • Chatterjee, K., Zufferey, D., & Nowak, M. A. (2012). Evolutionary game dynamics in populations with different learners. Journal of Theoretical Biology, 301, 161–173.

    Article  Google Scholar 

  • Chalub, F. A. C. C., & Souza, M. O. (2008). Discrete versus continuous models in evolutionary dynamics: From simple to simpler-and even simpler-models. Mathematical and Computer Modelling, 47, 743–754.

    Article  Google Scholar 

  • Conlisk, J. (1980). Costly optimizers versus cheap imitators. Journal of Economic Behavior and Organization, 1, 275–293.

    Article  Google Scholar 

  • Daniel, G., Arce, M., & Sandler, T. (2003). An evolutionary game approach to fundamentalism and conflict. Journal of Institutional and Theoretical Economics, 159, 132–154.

    Article  Google Scholar 

  • Friedman, D. (1991). Evolutionary games in economics. Econometrica, 59(3), 637–666.

    Article  Google Scholar 

  • Geng, X., Whinston, A. B., & Zhang, H. (2004). Health of electronic communities: An evolutionary game approach. Journal of Management Information Systems, 21, 83–110.

    Article  Google Scholar 

  • Güth, W., & Kliemt, H. (2003). An evolutionary game approach to fundamentalism and conflict: Comment. Journal of Institutional and Theoretical Economics, 159, 155–162.

    Article  Google Scholar 

  • Heller, D. (2004). An evolutionary approach to learning in a changing environment. Journal of Economic Theory, 114, 31–55.

    Article  Google Scholar 

  • Hehenkamp, B., & Kaarbøe, O. M. (2008). Imitators and optimizers in a changing environment. Journal of Economic Dynamics and Control, 32, 1357–1380.

    Article  Google Scholar 

  • Hofbauer, J., & Sigmund, K. (1998). Evolutionary games and population dynamics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Hofbauer, J., & Sandholm, W. H. (2002). On the global convergence of stochastic fictitious play. Econometrica, 70, 2265–2294.

    Article  Google Scholar 

  • Hofbauer, J., & Sandholm, W. H. (2009). Stable games and their dynamics. Journal of Economic Theory, 144, 1665–1693.

    Article  Google Scholar 

  • Josephson, J. (2009). Stochastic adaptation in finite games played by heterogeneous populations. Journal of Economic Dynamics and Control, 33, 1543–1554.

    Article  Google Scholar 

  • Lahkar, R., & Sandholm, W. H. (2008). The projection dynamic and the geometry of population games. Games and Economic Behavior, 64, 565–590.

    Article  Google Scholar 

  • Long, C., Zhang, Q., Li, B., Yang, H., & Guan, X. (2007). Non-cooperative power control for wireless Ad Hoc networks with repeated games. IEEE Journal on Selected Areas in Communications, 25, 1101–1112.

    Article  Google Scholar 

  • Maynard Smith, J., & Price, G. (1973). The logic of animal conflicts. Nature, 246, 15–18.

    Article  Google Scholar 

  • Nanĕz, E. C., Garcia, A., & Li, C. (2008). A game-theoretic approach to efficient power management in sensor networks. Operation Research, 56, 552–561.

    Article  Google Scholar 

  • Nowak, M. A., Sasaki, A., Taylor, C., & Fudenberg, D. (2004). Emergence of cooperation and evolutionary stability in finite populations. Nature, 428, 646–650.

    Article  Google Scholar 

  • Ohtsuki, H. (2010). Stochastic evolutionary dynamics of bimatrix games. Journal of Theoretical Biology, 264, 136–142.

    Article  Google Scholar 

  • Saez-Marti, M. (1997). On the asymptotic convergence to mixed equilibria in \(2\times 2\) asymmetric games. International Journal of Game Theory, 26, 549–559.

    Article  Google Scholar 

  • Schipper, B. C. (2009). Imitators and optimizers in Cournot oligopoly. Journal of Economic Dynamics and Control, 33, 1981–1990.

    Article  Google Scholar 

  • Sekiguchi, T. (2013). General conditions for strategy abundance through a self-referential mechanism under weak selection. Physica A, 392, 2886–2892.

    Article  Google Scholar 

  • Smith, M. J. (1984). The stability of a dynamic model of traffic assignment-an application of a method of Lyapunov. Transportation Science, 18, 245–252.

    Article  Google Scholar 

  • Sandholm, W. H. (2001). Potential games with continuous player sets. Journal of Economic Theory, 97, 81–108.

    Article  Google Scholar 

  • Sandholm, W. H. (2005). Excess payoff dynamics and other well-behaved evolutionary dynamics. Journal of Economic Theory, 124, 149–170.

    Article  Google Scholar 

  • Sandholm, W. H. (2009). Large population potential games. Journal of Economic Theory, 144, 1710–1725.

    Article  Google Scholar 

  • Sandholm, W. H. (2010). Local stability under evolutionary game dynamics. Theoretical Economics, 5, 27–50.

    Article  Google Scholar 

  • Sandholm, W. H., Dokumacı, E., & Lahkar, R. (2008). The projection dynamic and the replicator dynamic. Games and Economic Behavior, 64, 666–683.

    Article  Google Scholar 

  • Traulsen, J., Claussen, C., & Hauert, C. (2005). Coevolutionary dynamics: From finite to infinite populations. Physical Review Letters, 95, 238701.

    Article  Google Scholar 

  • Uehara, T., & Iwasa, Y. (2010). Global mutations and local mutations have very different effects on evolution, illustrated by mixed strategies of asymmetric binary games. Journal of Theoretical Biology, 262, 223–231.

    Article  Google Scholar 

  • Weibull, J. (1995). Evolutionary game theory. Cambridge: MIT Press.

    Google Scholar 

  • Zhang, Y., Mei, S., & Zhong, W. (2011). Stochastic evolutionary selection in finite populations. Economic Modelling, 28, 2743–2747.

    Article  Google Scholar 

  • Zhang, Y., Mei, S., & Zhong, W. (2012). Equilibrium selection under evolutionary game dynamics with optimizing behavior. Communications in Nonlinear Science and Numerical Simulation, 17, 3719–3726.

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank two anonymous referees for constructive comments that helped to substantially improve the quality and presentation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfang Zhang.

Appendix

Appendix

Proof of Proposition 1

It can be observed that the selection-mutation Moran process reduces to the model by Ohtsuki (2010) when \(w=0\). It thus follows from Ohtsuki (2010) that

$$\begin{aligned} \left\{ \begin{array}{l} \left\langle {x_1 [(A{{\varvec{y}}})_1 -{{{\varvec{x}}}}'A{{\varvec{y}}}]} \right\rangle _0 =\frac{(M-1)u}{8(1+Mu-u)}(a_{11} +a_{12} -a_{21} -a_{22} )\\ \\ \left\langle {y_1 [(B{{\varvec{x}}})_1 -{{{\varvec{y}}}}'B{{\varvec{x}}}]} \right\rangle _0 =\frac{(N-1)v}{8(1+Nv-v)}(b_{11} +b_{12} -b_{21} -b_{22} ) \\ \\ \left\langle {(A{{\varvec{y}}})_1 -(A{{\varvec{y}}})_2} \right\rangle _0 =\frac{1}{2}(a_{11} +a_{12} -a_{21} -a_{22} )\end{array}\right. \end{aligned}$$

By virtue of Eq. (12), it is not difficult to derive

$$\begin{aligned} \left\{ \begin{array}{l} \left\langle {x_1} \right\rangle _w =\frac{1}{2}+w(a_{11} +a_{12} -a_{21} -a_{22} )\left[ {\frac{(M-1)(1-u)}{8(1+Mu-u)}+\frac{1}{2}\delta } \right] +O(w^{2})\\ \\ \left\langle {y_1} \right\rangle _w =\frac{1}{2}+w\frac{(N-1)(1-v)}{8(1+Nv-v)}(b_{11} +b_{12} -b_{21} -b_{22} )+O(w^{2})\end{array} \right. \end{aligned}$$
(14)

Hence,

$$\begin{aligned} \!\!\left\{ \!\! \begin{array}{l} \left\langle {x_2} \right\rangle _w {=}1-\left\langle {x_1} \right\rangle _w {=}\frac{1}{2}-w(a_{11} +a_{12} -a_{21} -a_{22} )\left[ {\frac{(M-1)(1-u)}{8(1+Mu-u)}+\frac{1}{2}\delta } \right] {+}O(w^{2}) \\ \\ \left\langle {y_2} \right\rangle _w =1-\left\langle {y_1} \right\rangle _w =\frac{1}{2}-w\frac{(N-1)(1-v)}{8(1+Nv-v)}(b_{11} +b_{12} -b_{21} -b_{22} )+O(w^{2})\end{array} \right. \end{aligned}$$
(15)

Some simple calculations show that

$$\begin{aligned} \left\{ \begin{array}{l} {\left\langle {x_1 y_1 [(A{{\varvec{y}}})_1 -{{{\varvec{x}}}}'A{{\varvec{y}}}]} \right\rangle _0 =\frac{(M-1)[2(a_{11} -a_{21} )+v(N-1)(a_{11} +a_{12} -a_{21} -a_{22} )]u}{16(1+Mu-u)(1+Nv-v)}} \\ \\ {\left\langle {x_1 y_1 [(B{{\varvec{x}}})_1 -{{{\varvec{y}}}}'B{{\varvec{x}}}]} \right\rangle _0 =\frac{(N-1)[2(b_{11} -b_{21} )+u(M-1)(b_{11} +b_{12} -b_{21} -b_{22} )]v}{16(1+Mu-u)(1+Nv-v)}} \\ \\ \left\langle {y_1 [(A{{\varvec{y}}})_1 -(A{{\varvec{y}}})_2 ]} \right\rangle _0 =\frac{[2(a_{11} -a_{21} )+v(N-1)(a_{11} +a_{12} -a_{21} -a_{22} )]}{4(1+Nv-v)}\end{array}\right. . \end{aligned}$$
(16)

The proof can be completed by means of Eq. (14)–(16) and Eq. (11).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Gao, X. Stochastic Evolutionary Selection in Heterogeneous Populations for Asymmetric Games. Comput Econ 45, 501–515 (2015). https://doi.org/10.1007/s10614-014-9435-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-014-9435-x

Keywords

JEL Classification

Navigation