Skip to main content
Log in

Insoluble detoxification of trace metals in a marine copepod Tigriopus brevicornis (Müller) exposed to copper, zinc, nickel, cadmium, silver and mercury

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The marine harpacticoid copepods Tigriopus brevicornis were collected along the French Atlantic Coast (Loire Atlantique) and subsequently exposed to different lethal and sublethal concentrations of various metals (copper, zinc, nickel, cadmium, silver and mercury) for varying lengths of time. Ultrastructural investigations of control and experimentally exposed copepods were performed to investigate the intracellular localization of metals using transmission electronic microscopy (TEM). Copepod digestive epithelium cells as well as the cuticular integument were found to be the major metal storage tissues. Different types of metal-containing granules were found in both metal-exposed copepods and the controls: (1) within lysosomes, (2) in intracellular calcospherites and (3) in extracellular tiny granules. The elemental composition of the granules was determined on ultrathin sections by means of energy dispersive X-ray spectroscopy (EDS). The results were interpreted by considering previous data in order to understand how Tigriopus brevicornis copes with the presence of metals in its environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Mohanna SY, Nott JA (1987) B-Cells and digestion in the hepatopancreas of Penaeus semisulcatus (Crustacea: Decapoda). J Mar Biol Asso UK 66:403–414

    Google Scholar 

  • Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76:160–202

    Article  CAS  Google Scholar 

  • Andersen JT, Baatrup E (1988) Ultrastructural localization of mercury accumulations in the gills, hepatopancreas, midgut, and antennal glands of the brown shrimp, Crangon crangon. Aquat Toxicol 13:309–324

    Article  CAS  Google Scholar 

  • Andres S, Laporte JM, Mason RP (2002) Mercury accumulation and flux across the gills and the intestine of the blue crab (Callinectes sapidus). Aquat Toxicol 56:303–320

    Article  CAS  Google Scholar 

  • Arnaud J, Brunet M, Mazza J (1978) Studies on the midgut of Centropages typicus (Copepod, Calanoid). Cell Tissue Res 187:333–353

    Article  CAS  Google Scholar 

  • Arnaud J, Brunet M, Mazza J (1980) Structure et ultrastructure comparées de l’intestin chez plusieurs espèces de Copépodes Calanoides (Crustacea). Zoomorphologie 95:213–233

    Article  Google Scholar 

  • Ballan-Dufrançais C (1975) Bioaccumulation minérale, purique et flavinique chez les insectes. Méthodes d’étude-Importance physiologique. Thèse d’état, Université Pierre-et-Marie-Curie, Paris

  • Ballan-Dufrançais C (2002) Localization of metals in cells of Pterygote insects. Microsc Res Tech 56:82–98

    Google Scholar 

  • Barka S, Pavillon JF, Amiard JC (2001) Influence of different essential and non-essential metals on MTLP levels in the Copepod Tigriopus brevicornis. Comp Biochem Physiol C 128:479–493

    Article  CAS  Google Scholar 

  • Becker GL, Chen CH, Greenawalt JW, Lehninger AL (1974) Calcium phosphate granules in the hepatopancreas of the blue crab Callinectes sapidus. J Cell Biol 61:316–326

    Article  CAS  Google Scholar 

  • Bragadin M, Manente S, Francesca C (2005) A new proposal regarding the transport mechanism of mercury in biological membranes. Inorg Chim Acta 358:1237–1240

    Article  CAS  Google Scholar 

  • Brown BE (1982) The form and function of metal-containing ‘granules’ in invertebrate tissues. Biol Rev 57:621–667

    CAS  Google Scholar 

  • Bryan GW (1976) Heavy metal contamination in the sea. In: Johnson R (ed) Marine pollution. Academic Press, London, pp 185–302

    Google Scholar 

  • Bury NR, Walker PA, Clover CN (2003) Nutritive metal uptake in teleost fish. J Exp Biol 206:11–23

    Article  CAS  Google Scholar 

  • Chavez-Crooker P, Garrido N, Pozo P, Ahearn GA (2003) Copper transport by lobster (Homarus americanus) hepatopancreatic lysosomes. Comp Biochem Physiol C 135:107–118

    Google Scholar 

  • Cheung VWK, Marshall AT (1973) Studies on water and ion transport in homopteran insects: ultrastructure and cytochemistry of the cicadoid and cercopoid midgut. Tissue Cell 5:651–669

    CAS  Google Scholar 

  • Chou CL, Paon L, Moffatt J, Zwicker B (1998) Concentrations of metals in the American lobster (Homarus americanus) and sediments from harbours of the eastern and southern shores and the Annapolis Basin of Nova Scotia, Canada. Can Tech Rep Fish Aquat Sci 2254:78–91

    Google Scholar 

  • Corrêa JD, Allodi S, Farina M (2000) Zinc accumulation in phosphate granules of Ucides cordatrus hepatopancreas. Braz J Med Biol Res 33:217–221

    Article  Google Scholar 

  • Corrêa JD, Farina M, Allodi S (2002) Cytoarchitectural features of Ucides cordatrus (Crustacea Decapoda) hepatopancreas: structure and elemental composition of electron-dense granules. Tissue Cell 34:315–325

    Article  Google Scholar 

  • Cosson RP, Amiard-Triquet C, Amiard JC (1991) Metallothioneins and detoxification. Is the use of detoxification protein for MTs a language abuse? Water Air Soil Poll 57–58:555–567

    Article  Google Scholar 

  • Costa M, Zhuang Z, Huang X, Cosentino S, Klein CB, Salnikow K (1994) Molecular mechanisms of nickel carcinogenesis. Sci Total Environ 148(Special Issue):191–199

    Google Scholar 

  • Defaye D, Suck J, Dussart B (1985) The alimentary canal of a freshwater Copepoda, Macrocyclops albidus and some other Cyclopoida. Acta Zool 66:119–129

    Article  Google Scholar 

  • Durfort M (1981) Mineral concretions in the intestinal epithelium of Cyclops strenuus fish (Crustacea: Copepoda). Ultrastructural study. Bull Inst Cat Hist Nat 47:93–103

    Google Scholar 

  • Fowler BA (1987) Intracellular compartmentation of metals in aquatic organisms: relationships to mechanisms of cell injury. Environ Health Persp 71:121–133

    Article  CAS  Google Scholar 

  • Guary JC, Négrel R (1981) Calcium phosphate granules: a trap for transuranics and iron in crab hepatopancreas. Comp Biochem Physiol 68A:423–427

    Article  CAS  Google Scholar 

  • Hogstrand C, Wood CM (1998) Toward a better understanding of the bioavailability, physiology, and toxicity of silver in fish: implications for water quality criteria. Environ Toxicol Chem 17:547–561

    Article  CAS  Google Scholar 

  • Hopkin SP (1989) Ecophysiology of metals in terrestrial invertebrates. Elsevier Applied Sciences, London

    Google Scholar 

  • Hopkin SP, Nott JA (1979) Some observations on concentrically structured intracellular granules in the hepatopancreas of the shore crab Carcinus maenas (L.) with special reference to the B-Cells in the hepatopancreas. J Mar Biol Asso UK 60:891–907

    Article  Google Scholar 

  • Hryniewiecka-Szyfter Z (1972) Ultrastructure of the hepatopancreas of Porcellio scaber Latr. In relation to the function of iron and copper accumulation. Bull Soc Amis Sci Lett Poznan 12/13:135–142

    Google Scholar 

  • Icely JD, Nott JA (1980) Accumulation of copper in the “hepatopancreatic” caeca of Corophium volutator (Crustacea: Amphipoda). Mar Biol 57:193–199

    Article  CAS  Google Scholar 

  • Kramer JR, Benoit G, Bowles KC, Di Toro DM, Herrin RT, Luther III GW, Manolopoulos H, Robillard KA, Shafer MM, Shaw JR (2002) Environmental chemistry of silver. In: Andren AW, Bober TW (eds) Silver in the environment: transport, fate and effects. Setac Press, Pensacola, pp 1–25

    Google Scholar 

  • Loret SM, Devos PE (1995) Corrective note about R*cells of the digestive gland of the shore crab Carcinus maenas. Cell Tissue Res 290:401–405

    Google Scholar 

  • Marigomez I, Soto M, Carajaville MP, Angulo E, Giamberini L (2002) Cellular and subcellular distribution of metals in molluscs. Microsc Res Tech 56:358–392

    Article  CAS  Google Scholar 

  • Masala O, McInnes EJL, O’Brien P (2002) Modelling the formation of granules: the influence of manganese ions on calcium pyrophosphate precipitates. Inorg Chim Acta 339:366–372

    Article  CAS  Google Scholar 

  • Masala O, O’Brien P, Rainbow PS (2004) Analysis of metal-containing granules in the barnacle Tetraclita squamosa. J Inorg Biochem 98:1095–1102

    Article  CAS  Google Scholar 

  • Mason AZ, Jenkins KD (1995) Metal detoxification in aquatic organisms. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. John Wiley & Sons, London, pp 479–608

    Google Scholar 

  • Mason AZ, Nott JA (1981) The role of intracellular biomineralized granules in the regulation and detoxification of metals in gastropods with special reference to the marine prosobranch Littorina littorea. Aquat Toxicol 1:239–256

    Article  CAS  Google Scholar 

  • Mason AZ, Simkiss K (1982) Sites of mineral deposition in metal accumulating cells. Exp Cell Res 139:383–391

    Article  CAS  Google Scholar 

  • Moore PG (1979) Crystalline structure in the gut caeca of the amphipod Stegocephaloides christaniensis Boeck. J Exp Mar Biol Ecol 39:223–229

    Article  Google Scholar 

  • Moore PG, Rainbow PS (1992) Aspects of the biology of iron, copper and other metals in relation to feeding in Andaniexis abyssi, with notes on Andaniopsis nordlandica and Stegocephalus inflatus (Amphipoda: Stegocephalidae), from Norwegian waters. Sarsia 76:215–225

    Google Scholar 

  • Nassiri Y, Rainbow PS, Amiard-Triquet C, Rainglet F, Smith BD (2000) Trace metal detoxification in the ventral caeca of Orchestia gammarellus (Crustacea: Amphipoda). Mar Biol 136:477–484

    Article  CAS  Google Scholar 

  • Nott JA (1991) Cytology of pollutant metals in marine invertebrates: a review of microanalytical applications. Scan Microsc 5:191–222

    CAS  Google Scholar 

  • Nott JA, Langston WJ (1989) Cadmium and the phosphate granules in Littorina littorea. J Mar Biol Ass UK 69:219–227

    CAS  Google Scholar 

  • Nott JA, Corner EDS, Mavin LJ, O’Hara SCM (1985) Cyclical contributions of the digestive epithelium to faecal pellet formation by the copepod Calanus helgolandicus. Mar Biol 89:271–279

    Article  Google Scholar 

  • Pullen JSH, Rainbow PS (1991) The composition of pyrophosphate heavy metal detoxification granules in barnacles. J Exp Mar Biol Ecol 150:249–266

    Article  CAS  Google Scholar 

  • Rainbow PS (1993) The significance of trace metal concentration in marine invertebrates. In: Dallinger R, Rainbow PS (eds) Ecotoxicology of metals in invertebrates. Lewis Publ, Boca Raton, pp 3–23

    Google Scholar 

  • Rainbow PS (2002) Trace metal concentrations in aquatic invertebrates: why and so what? Environ Poll 120:497–507

    Article  CAS  Google Scholar 

  • Rainbow PS (2006) Trace metal bioaccumulation: model, metabolic availability and toxicity. Environ Int 30:67–78

    Google Scholar 

  • Rainbow PS, Phillips DJH, Depledge MH (1990) The significance of trace metal concentrations in marine invertebrates, a need for laboratory investigation of accumulation strategies. Mar Poll Bull 21:321–324

    Article  CAS  Google Scholar 

  • Roesijadi G, Robinson WE (1994) Metal regulation in aquatic animals: mechanisms of uptake, accumulation and release. In: Martins DC, Ostrander GK (eds) Aquatic toxicology: molecular, biochemical and cellular perspectives. Lewis Publishers, Boca Raton, pp 387–420

    Google Scholar 

  • Schuwerack MM, Lewis JW (2003) The mode of action of acute and chronic concentrations of waterborne Cd in the digestive gland of the acclimated infested freshwater crab (Potamonautes warreni). Cell Tissue Res 312:144–156

    Google Scholar 

  • Simkiss K (1976) Intracellular and extracellular routes in biomineralization. Symp Soc Exp Biol 30:423–444

    CAS  Google Scholar 

  • Simkiss K (1981) Cellular discrimination processes in metal accumulating cells. J Exp Biol 94:317–325

    CAS  Google Scholar 

  • Simkiss K, Mason AZ (1983) Metal ions: metabolic and toxic effects. In: Wilbur KM (eds) The mollusca, vol 2. Academic Press, New York, pp 101–113

    Google Scholar 

  • Simkiss K, Taylor MG (1989) Metal fluxes across the membranes of aquatic organisms. CRC Crit Rev Aquat Sci 1:173–185

    CAS  Google Scholar 

  • Simkiss K, Taylor MG (1994) Calcium magnesium phosphate granules: atomistic simulations explaining cell death. J Exp Biol 190:131–139

    CAS  Google Scholar 

  • Simkiss K, Wilbur KM (1989) Crustacea – the dynamics of epithelial movements. In: Simkiss K, Wilbur KM (eds) Biomineralization: cell biology and mineral deposition. Academic Press, San Diego, pp 205–229

    Google Scholar 

  • Simmons J, Simkiss K, Taylor MG, Jarvis KE (1996) Crab biominerals as environmental monitors. Bull Inst Ocean 14:225–231

    Google Scholar 

  • Stegeman JJ, Brouwer M, Di Giulio RT, Förlin L, Fowler BA, Sanders BM, Van Veld PA (1992) Molecular responses to environmental contamination: enzyme and protein systems as indicators of chemical exposure and effect. In: Huggett RJ, Kimerle RA, Mehrle PM, Bergman HL (eds) Biomarkers, biochemical, physiological and histological markers of anthropogenic stress. Lewis Publ, Boca Raton, pp 235–243

    Google Scholar 

  • Sullivan PA, Robinson WE, Morse MP (1988) Isolation and characterization of granules from the kidney of the bivalve Mercenaria mercenaria. Mar Biol 99:359–368

    Article  CAS  Google Scholar 

  • Tupper C, Pitman A, Cragg S (2000) Copper accumulation in the digestive caecae of Limnoria quadripunstata Holthius (Isopoda: Crustacea) tunnelling CCA-treated wood in laboratory cultures. Holzforschung 54:570–576

    Article  CAS  Google Scholar 

  • Viarengo A, Nott JA (1993) Mechanisms of heavy metal cation homeostasis in marine invertebrates. Comp Biochem Physiol C 104:355–372

    Article  Google Scholar 

  • Viarengo A, Moore MN, Mancinelli G, Mazzucotelli A Pipe RK, Farrar SV (1987) Metallothioneins and lysosomes in metal toxicity and homeostasis in marine mussels: the effect of the cadmium in the presence and absence of phenanthrene. Mar Biol 94:251–257

    Article  CAS  Google Scholar 

  • Vogt G, Quinitio ET (1994) Accumulation and excretion of metal granules in the prawn Penaeus monodon, exposed to water-borne copper, lead, iron and calcium. Aquat Toxicol 28:223–241

    Article  CAS  Google Scholar 

  • Walker G (1977) “Copper” granules in the barnacle Balanus balanoides. Mar Biol 39:343–349

    Article  CAS  Google Scholar 

  • Weeks JM (1992) Copper-rich granules in the ventral caeca of talitrid amphipods (Crustacea; Amphipoda: Talitridae). Ophelia 36:119–133

    Google Scholar 

  • White KN (1978) Excretion in cirripedes. PhD thesis, University of Wales, Bangor

Download references

Acknowledgements

I wish to thank Anny Anglo, Lydia Massot and Anne Yvonne Jeantet (Laboratoire de Cytophysiologie analytique, Université Pierre et Marie Curie, Paris) for their valuable and helpful support and Patricia Beaunier for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabria Barka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barka, S. Insoluble detoxification of trace metals in a marine copepod Tigriopus brevicornis (Müller) exposed to copper, zinc, nickel, cadmium, silver and mercury. Ecotoxicology 16, 491–502 (2007). https://doi.org/10.1007/s10646-007-0155-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-007-0155-z

Keywords

Navigation