Skip to main content
Log in

Acid leachable trace metals in sediment cores from Sunderban Mangrove Wetland, India: an approach towards regular monitoring

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The paper presents the first document to identify the enrichment pattern of acid leachable trace metals (ALTMs) such as Fe, Mn, Cr, Cu, Ni, Pb, Cd, Co, Mo, Ag, As and Ba and their relationship with sediment quality parameters (pH, organic carbon, carbonates and texture) in core sediments (<63 μm particle size) from Indian Sunderban mangrove wetland, formed at the estuarine phase of the river Hugli (Ganges). Textural analysis reveals an overall predominance of mud. The results indicate that the change in pH values causes coagulation and precipitation of ALTMs. Fe and Mn have fairly close distribution patterns of enrichment in surface layers which might be ascribed to early diagnetic processes. The most prominent feature of ALTMs is the enrichment of Fe, Mn, Cr, Cu, Ni, Pb, and Ba in the surface–subsurface layers in the sediment cores, which is mainly attributed to the intense industrial and agricultural activities as well as drainage of untreated domestic sewage to this coastal region. The ALTMs also indicate their association with organic carbon and Fe–Mn oxyhydroxides. The enrichment is well—supported by the correlation, grouping and clustering of ALTMs in statistical analyses. Anthropogenic Factor values indicated ALTMs enrichment for all trace metals due to intense anthropogenic activities. Overall higher values of ALTMs in sediments in comparison to other Indian coastal regions indicate that they are mainly due to the uncontrolled anthropogenic activities in this mangrove estuarine complex. Statistical analyses suggest that five ALTMs (Cu, Pb, As, Mo, Ba) are attached to the organic particles and the clustering of elements separately also indicates that they are from external source. The result of the present study suggests the need for a regular monitoring program which will help to improve the quality of this potential wetland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abu-Hilal H, Badran MM (1990) Effect of pollution sources on metal concentration in sediment cores from the Gulf of Aqaba (Red Sea). Mar Pollut Bull 21(4):190–197

    Article  CAS  Google Scholar 

  • Agemian H, Chau ASY (1976) Evaluation of extraction technique for the determination of metals in aquatic sediments. Analyst 101:761–767

    Article  CAS  Google Scholar 

  • Alongi DM, Ramanathan AL, Kannan L, Tirendi F, Trott LA, Balakrishna Prasad M (2005) Influence of human-induced disturbance on benthic microbial metabolism in the Pichavaram mangroves, Vellar-Coleroon estuarine complex, India. Mar Biol 147:1033–1044

    Article  Google Scholar 

  • Álvarez-Iglesias P, Rubio B, Vilas F (2000) Especiación de plomo en sedimentos y niveles de concentración en organismos de la zona intermareal de la Ensenada de San Simón (Ría de Vigo, NO España). Thalassas 16:79–94

    Google Scholar 

  • Ankley GT, Lodge K, Call DJ, Balcer MD, Brooke LT, Cook PM et al (1992) Integrated assessment of contaminated sediments in lower Fox River and Green Bay Wisconsin. Ecotoxicol Environ Saf 23(1):46–63

    Article  CAS  Google Scholar 

  • Ayyamperumal T, Jonathan MP, Srinivasalu S, Armstrong-Altrin JS, Ram-Mohan V (2006) Assessment of acid leachable trace metals in sediment cores from River Uppanar, Cuddalore, southeast coast of India. Environ Poll 143:34–45

    Article  CAS  Google Scholar 

  • Belzile N, Tessier A (1990) Interactions between arsenic and iron oxyhydroxides in natural sediments. Geochim Cosmochim Acta 54:103–109

    Article  CAS  Google Scholar 

  • Binelli A, Sarkar SK, Chatterjee M, Riva C, Parolini M, Bhattacharya BD, Bhattacharya A, Satpathy KK (2007) Concentration of polybrominated diphenyl ethers (PBDEs) in sediment cores of Sunderban mangrove wetland, northeastern part of Bay of Bengal (India). Mar Pollut Bull 54:1220–1229

    Article  CAS  Google Scholar 

  • Borovec Z (1996) Evaluation of the concentrations of trace elements in stream sediments by factor and cluster analysis and the sequential extraction procedure. Sci Total Environ 177:237–250

    Article  CAS  Google Scholar 

  • Boven L, Stoks R, Forro L, Brendonck L (2008) Seasonal dynamics in water quality and vegetation cover in temporary polls with variable hydro-periods in Kiskunsäg (Hungary). Wetlands 28(2):401–410

    Article  Google Scholar 

  • Boyle EA, Edmond JM, Sholkovitz ER (1977) The mechanism of iron removal in estuaries. Geochim Cosmochim Acta 41:1313–1324

    Article  CAS  Google Scholar 

  • Bridgeman HA (1992) Evaluating rain water contamination and sources in southwest Australia using factor analysis. Atmos Environ Gen Top 26A:2401–2412

    Article  Google Scholar 

  • Caetano M, Vale C (2002) Retention of arsenic and phosphorous in iron-rich concretions of Tagus salt-marshes. Mar Chem 79:261–271

    Article  CAS  Google Scholar 

  • Calace N, Ciardullo S, Petronio B, Pietrantonio M, Abbodanzi F, Campisi T, Cardellicchio N (2005) Influence of chemical parameters (heavy metals, organic matter, sulphur and nitrogen) on yoxicity of sediments from the Mar Piccolo (Taranto, Ionian Sea, Italy). Microchem J 79:243–248

    Article  CAS  Google Scholar 

  • Calvert SE, Mukherjee S, Morris RJ (1985) Trace metals in humic and fluvic acids from modern organic rich sediments. Oceanol Acta 8:167–173

    CAS  Google Scholar 

  • Canuel EA, Martens CS (1993) Seasonal variability in the sources and alteration of organic matter associated with recently deposited sediments. Org Geochem 20(5):563–577

    Article  CAS  Google Scholar 

  • Chatterjee M, Silva Filho EV, Sarkar SK, Sella SM, Bhattacharya A, Satpathy KK, Prasad MVR, Chakraborty S, Bhattacharya BD (2007) Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environ Int 33:346–356

    Article  CAS  Google Scholar 

  • Chatterjee M, Canario J, Sarkar SK, Brancho V, Bhattacharya AK, Saha S (2009a) Mercury enrichments in core sediments in Sunderban mangroves, northeastern part of Bay of Bengal and their ecotoxicological significance. Environ Geol 57(5):1125–1134

    Article  CAS  Google Scholar 

  • Chatterjee M, Massolo S, Sarkar SK, Bhattacharya AK, Bhattacharya BD, Satpathy KK, Saha S (2009b) An assessment of trace element contamination in intertidal sediment cores of Sunderban mangrove wetland, India for evaluating sediment quality guidelines. Environ Monit Assess 150:307–322

    Article  CAS  Google Scholar 

  • Davis A, Sellstone C, Clough S, Barrick R, Yare B (1996) Bioaccumulation of arsenic, chromium and lead in fish: constraints imposed by sediment geochemistry. Appl Geochem 11:409–423

    Article  CAS  Google Scholar 

  • De AK, Sen AK, MdR Karim, Stockton RA (1985) Pollution profile of the Damodar river sediments. Environ Int 11:453–457

    Article  CAS  Google Scholar 

  • Deflandre B, Mucci A, Gange JP, Guignard C, Sundby B (2002) Early diagenetic processes in coastal marine sediments distributed by catastrophic sedimentation event. Geochim Cosmochim A 66(14):2547–2558

    Article  CAS  Google Scholar 

  • Dehairs F, Chesselet R, Jedwab J (1980) Discrete suspended particles of barite and the barium cycles in the open ocean. Earth Planet Sci Lett 49:528–550

    Article  CAS  Google Scholar 

  • Dymond J, Suess E, Lyle M (1992) Barium in deep-sea sediment: a geochemical proxy for paleoproductuvity. Paleocean 7:163–181

    Article  Google Scholar 

  • El-Nemr A (2003) Assessment of heavy metal pollution in surface muddy sediments of Lake Burullus, southeastern Mediterranean, Egypt. J Aquat Biol Fish 7(4):67–90

    Google Scholar 

  • El-Nemr A, Khaled A, El-Sikaily A (2006) Distribution and statistical analysis of leachable and total heavy metals in the sediments of the Suez Gulf. Environ Monit Assess 118(1–3):89–112

    Article  CAS  Google Scholar 

  • El-Sayed MKH (1982) Effect of sewage effluent on the sediment of Nordasvanet (a land-locked fjord), Norway. Mar Pollut Bull 13:85–88

    Article  CAS  Google Scholar 

  • Filgueiras AV (2004) Extraccion secuencial de metales pesados en sedimentos: Desarrollo de metodos rapidos y aplicaciones. PhD thesis, Facultad de Quimica, Universidad de Vigo, p 340

  • Forstner F (1983) Assessment of metal pollution in rivers and estuaries. In: Thornton I (ed) Applied environmental geochemistry. Academic Press, London

    Google Scholar 

  • Forstner U, Wittman GT (1983) Metal pollution in the aquatic environment. Springer-Verlag, Berlin

    Google Scholar 

  • Francois R (1988) A study on the regulation of the concentrations of some trace metals (Rb, Sr, Zn, Pb, Cu, V, Cr, Ni, Mn and Mo) in Saanich inlet sediments, British Columbia, Canada. Mar Geol 83:285–308

    Article  CAS  Google Scholar 

  • Frontier S, Pichod-Viale D (1991) Ecosyste`mes, structure, fonctionnement, e′volution. Collection d’e′cologie 21. Masson Press, Paris

    Google Scholar 

  • Gaillard JF, Pauwells H, Michard G (1989) Chemical diagenesis of coastal marine sediments. Oceanol Acta 12:175–187

    CAS  Google Scholar 

  • Gendron A, Silverberg N, Sundby B, Lebel J (1986) Early diagenesis of cadmium and cobalt in sediments of the Laurentian trough. Geochim Cosmochim Acta 50:741–747

    Article  CAS  Google Scholar 

  • Goessler W, Maher W, Irgolic KJ, Kuehnelt D, Schlagenhaufen C, Kaise T (1997) Arsenic compounds in marine food chain. Fresenius J Anal Chem 359:434–437

    Article  CAS  Google Scholar 

  • Hirner AV, Kristsotakis K, Tobschall HJ (1990) Metal-organic association in sediments—I. Comparison of unpolluted recent and ancient sediments and sediments affected by anthropogenic pollution. Appl Geochem 5:491–505

    Article  CAS  Google Scholar 

  • Holmes CW, Slade EA, Mickerran CJ (1974) Migration and redistribution of zinc and cadmium in marine estuarine system. Environ Sci Technol 8:254–259

    Article  Google Scholar 

  • Janakiraman D, Jonathan MP, Srinivasalu S, Armstrong-Altrin JS, Mohan SP, Ram-Mohan V (2007) Trace metals in core sediments from Muthupet mangroves, SE coast of India: application of acid leachable technique. Environ Pollut 145:245–257

    Article  CAS  Google Scholar 

  • Jonathan MP, Ram Mohan V (2003) Heavy metals in sediments of the inter shelf off the Gulf of Mannar, southeast coast of India. Mar Pollut Bull 46:258–268

    Article  Google Scholar 

  • Klinkhammer GP, Heggie DT, Graham DW (1982) Metal disgnesis in oxic marine sediments. Earth Planet Sci Lett 61:211–219

    Article  CAS  Google Scholar 

  • Krauskopf KB (1965) Factors affecting the concentration of thirteen rare metals in sea water. Geochem Cosmochim Acta 9:1–32

    Article  Google Scholar 

  • Kubota R, Kunito T, Tanabe S (2001) Arsenic accumulation in the liver tissue of marine mammals. Environ Pollut 115:303–312

    Article  CAS  Google Scholar 

  • Lakshumanan C (2001) Modeling organic carbon deposition, degradation and preservation in sediments of Pichavaram mangrove wetlands, southeast coast of India (unpublished Ph.D. thesis) Anna University, Chennai, India, 178 p

  • Lambert CE, Veron A, Buat-Menard P, Heyraud M, Grousset F, Simpson P (1991) The role of large biogenic particles in the transport of atmospheric pollutant Pb down to North Atlantic sediments. Oceanol Acta 14:67–76

    CAS  Google Scholar 

  • Lee SV, Cundy AB (2001) Heavy metal concentration and mixing processes in sediments from the Humber estuary, Eastern England. Estuar Coast Shelf Sci 53:619–636

    Article  CAS  Google Scholar 

  • Leivouri M (1998) Heavy metal contamination in surface sediments in the Gulf of Finland and comparison with the Gulf of Bothnia. Chemosphere 36:43–59

    Article  Google Scholar 

  • Leoni L, Sartori F (1996) Heavy metals and arsenic in sediments from the continental shelf the Northern Tyrrhenian/East Ligurian seas. Mar Environ Res 41:73–98

    Article  CAS  Google Scholar 

  • Leoni L, Sartori F (1997) Heavy metal and arsenic distributions in sediments of the Elba-Argentario basin, southern Tuscany, Italy. Environ Geol 32(2):83–92

    Article  CAS  Google Scholar 

  • Liao JF (1990) The chemical properties of the mangrove Solonchak in the northeast part of Hainan Island. The Acta Scientiarum Naturalium Universities Sunyatseni (Supp.) 9(4):67–72

    Google Scholar 

  • Lu CSJ, Chen KY (1977) Migration of trace metals in interfaces of seawater and polluted surficial sediments. Environ Sci Technol 11:174–182

    Article  CAS  Google Scholar 

  • Maher WA, Aislabie J (1992) Polycyclic aromatic hydrocarbons in near shore marine sediments of Australia. Sci Total Environ 112(2–3):143–164

    CAS  Google Scholar 

  • Marmolejo-Rodriguez AJ, Prego R, Meyer-Willerer A, Shumilin E, Cobelo-Garcia A (2007) Total and labile metals in surface sediments of the tropical river-estuary system of Marabasco (Pacific coast of Mexico): influence of an iron mine. Mar Pollut Bull 55:459–468

    Article  CAS  Google Scholar 

  • Millward GE, Moore RM (1982) The adsorption of Cu, Mn and Zn by iron oxyhydroxides in model estuarine solutions. Water Res 6:981–985

    Article  Google Scholar 

  • Nath VP, Rao VP, Becker KP (1989) Geochemical evidence of terrigenous influence up to 8°S in the Central Indian Basin. Mar Geol 87:301–313

    Article  CAS  Google Scholar 

  • Nohara M, Yokota S (1978) The geochemistry of trace elements in pelagic sediments from the central Pacific Basin. J Geol Soc Japan 84(4):165–175

    CAS  Google Scholar 

  • Nolting RF, Helder W (1991) Lead and zinc as indicators for atmospheric and riverine particle transport to sediments in the Gulf of Lions. Oceanol Acta 14(4):357–367

    CAS  Google Scholar 

  • Prohic E, Kniewald G (1987) Heavy metal distribution in recent sediments of the Krka River estuary—an example of sequential extraction analysis. Mar Chem 22:279–297

    Article  CAS  Google Scholar 

  • Rainbow PS (1995) Physiology, physicochemistry and metal uptake: a crustacean perspective. Mar Pollut Bull 31(1–3):55–59

    Article  CAS  Google Scholar 

  • Ramesh R (2003) Land use in coastal ecosystems and its implications on nutrient biochemistry. In: Ramesh R, Ramachandran S (eds) Coastal urban environments. Capital, New Delhi, pp 39–46

    Google Scholar 

  • Reimann C, De Caritat P (1998) Chemical elements in the environment: fact sheets for the geochemist and environmental scientist. Springer, Heidelberg, p 398

    Google Scholar 

  • Ruiz-Ferrnandez AC, Paez-Osuna F, Hillari-Marcel C, Soto-Jimenez M, Ghaleb B (2001) Principal component analysis applied to assessment of metal pollution from urban waters in the Culiacan River Estuary. Bull Environ Contam Toxicol 67:741–748

    Article  Google Scholar 

  • Samuel NL, Phillips DJH (1988) Distribution, variability and impacts of trace elements in San Francisco Bay. Mar Pollut Bull 19:413–425

    Article  Google Scholar 

  • Santschi PH, Hohener P, Benoit G, Bucholtz-ten Brink M (1990) Chemical processes at the sediment-water interface. Mar Chem 30:269–315

    Article  CAS  Google Scholar 

  • Sarkar SK, Bhattacharya A (2003) Conservation of biodiversity of the coastal resources of Sundarbans, northeast India: an integrated approach through environmental education. Mar Pollut Bull 47(1–6):260–264

    Article  CAS  Google Scholar 

  • Sarkar SK, Bilinski SF, Bhattacharya A, Saha M, Bilinski H (2004) Levels of elements in the surficial estuarine sediments of the Hugli River, northeast India and their environmental implications. Environ Int 30:1089–1098

    Article  Google Scholar 

  • Sarkar SK, Saha M, Takada H, Bhattacharya A, Mishra P, Bhattacharya B (2007) Water quality management in the lower stretch of the river Ganges, east coast of India: an approach through environmental education. J Clean Prod 15:1559–1567

    Article  Google Scholar 

  • Sawlan JJ, Murray JW (1983) Trace metal remobilization in the interstitial waters of red clay and hemipelagic marine sediments. Earth Planet Sci Lett 64:213–230

    Article  CAS  Google Scholar 

  • Selvaraj K, RamMohan V, Srinivasalu S, Jonathan MP, Siddartha R (2003) Distribution of non-detrital trace metals in sediments cores from Ennore creek, southeast coast of India. J Geol Soc India 62:191–204

    CAS  Google Scholar 

  • Selvaraj K, Ram Mohan V, Szefer P (2004) Evaluation of metal contamination in coastal sediments of the Bay of Bengal, India: geochemical and statistical approaches. Mar Pollut Bull 49:174–185

    Article  CAS  Google Scholar 

  • Settle DM, Petterson CC (1982) Magnitudes and sources of precipitation and only deposition fluxes of industrial and natural leads to the North Pacific at Ene Watak. J Geophys Res 87:8857–8869

    Article  CAS  Google Scholar 

  • Sharma VK, Rhudy KB, Koening R, Vazquez FG (1999) Metals in sediments of the upper laguna Madre. Mar Pollut Bull 38:1221–1226

    Article  CAS  Google Scholar 

  • Shaw TJ, Gieskes JM, Jahnke RA (1990) Early diagenesis in differing depositional environments. The responses of transition metals in pore water. Geochim Cosmochim Acta 54:1233–1246

    Article  CAS  Google Scholar 

  • Shumilin E, Carriquiry JD, Camacho-Ibar VF, Sapozhnikov D, Kalmykov S, Sanchez A, Aguiniga-Garcia S, Sapozhinikov YA (2002) Spatial and vertical distributions of elements in sediments of the Colorado river delta and upper Gulf of California. Mar Chem 79:113–131

    Article  CAS  Google Scholar 

  • Shumilin E, Meyer-Willerer A, Marmolejo-Rodriguez AJ, Morton-Bermea O, Galicia-Perez MA, Hernandez E, Gonzalez-Hernandez G (2005) Iron, cadmium, chromium, copper, cobalt, lead, and zinc distribution in the suspended particulate matter of the tropical Marabasco River and its estuary, Colima, Mexico. Bull Environ Contam Toxicol 74:518–525

    Article  CAS  Google Scholar 

  • Subramanian V, Van Grieken R, Van’t Dack L (1987) Heavy metal distributions in the sediments of Ganges and Brahmaputra rivers. Environ Geol Water Sci 9:93–103

    Article  CAS  Google Scholar 

  • Szefer P, Glasby GP, Pempkowiak J, Kaliszan R (1995) Extraction studies of heavy metal pollutants in surficial sediments from the southern Baltic Sea off Poland. Chem Geol 120:111–126

    Article  CAS  Google Scholar 

  • Taliadouri FV (1995) A weak acid extraction method as a tool for the metal pollution assessment in surface sediments. Miriochim Acta 119:243–249

    Article  Google Scholar 

  • Taylor JH, Price NB (1983) The geochemistry of iron and manganese in waters and sediments of Bolstadfjord, SW Norway. Estuar Coast Shelf Sci 17:1–19

    Article  Google Scholar 

  • Vangronveld J, Cunnihgham SD (1998) Metal contaminated soils: in-situ inactivation and Phytoremediation. Springer Verlag, Berlin

    Google Scholar 

  • Waldichuk M (1985) Biological availability of metals to marine organisms. Mar Pollut Bull 16:7–11

    Article  Google Scholar 

  • Wang Y, Van Cappellen P (1996) A multicomponent reactive transport model of early diagenesis: application to redox cycling in coastal marine sediments. Geochim Cosmochim Acta 60(16):2993–3014

    Article  CAS  Google Scholar 

  • Wardas M, Budek L, Rybicka EH (1996) Variability of heavy metals content in bottom sediments of the Wilga River, a tributary of the Vistula River (Krakow area, Poland). Appl Geochem 11:197–202

    Article  CAS  Google Scholar 

  • Zuloaga O, Prieto A, Usobiaga A, Sarkar SK, Chatterjee M, Bhattacharya BD, Bhattacharya A, Alam Md A (2009) Polycyclic aromatic hydrocarbons in intertidal marine bivalves of Sunderban mangrove wetland, India: an approach to bioindicator species. Water Air Soil Pollut 201:305–318

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research work was supported by University Grants Commission (UGC), New Delhi, India [(Sanction No UGC/199/UPE/07] under the scheme of “University with Potential for Excellence” (Modern Biology Group). One of the authors (Md. Aftab Alam) is greatly indebted to UGC for awarding him project fellowship. M.P. Jonathan and P.D. Roy thank the support by SNI-CONACyT, Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sarkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonathan, M.P., Sarkar, S.K., Roy, P.D. et al. Acid leachable trace metals in sediment cores from Sunderban Mangrove Wetland, India: an approach towards regular monitoring. Ecotoxicology 19, 405–418 (2010). https://doi.org/10.1007/s10646-009-0426-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-009-0426-y

Keywords

Navigation