Skip to main content

Advertisement

Log in

Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Silver nanoparticles have been incorporated into a wide variety of consumer products, ideally acting as antimicrobial agents. Silver exposure has long been known to cause toxic effects to a wide variety of organisms, making large scale production of silver nanoparticles a potential hazard to environmental systems. Here we describe the first evidence that an organism may be able to sense manufactured nanoparticles in a complex, environmentally relevant exposure and that the presence of nanoparticles alters the organism’s behavior. We found that earthworms (Eisenia fetida) consistently avoid soils containing silver nanoparticles and AgNO3 at similar concentrations of Ag. However, avoidance of silver nanoparticles occurred over 48 h, while avoidance of AgNO3 was immediate. It was determined that avoidance of silver nanoparticles could not be explained by release of silver ions or any changes in microbial communities caused by the introduction of Ag. This leads us to conclude that the earthworms were in some way sensing the presence of nanoparticles over the course of a 48 h exposure and choosing to avoid exposure to them. Our results demonstrate that nanoparticle interactions with organisms may be unpredictable and that these interactions may result in ecologically significant effects on behavior at environmentally relevant concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong YL (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharm 233:404–410

    Article  CAS  Google Scholar 

  • Alvarenga P, Palma P, Goncalves AP, Fernandes RM, de Varennes A, Vallini G, Duarte E, Cunha-Queda AC (2008) Evaluation of tests to assess the quality of mine-contaminated soils. Environ Geochem Health 30:95–99

    Article  CAS  Google Scholar 

  • Asharani PV, Wu YL, Gong ZY, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:1–8

    Article  Google Scholar 

  • Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5:1897–1910

    Article  CAS  Google Scholar 

  • Bengtsson G, Nordstrom S, Rundgren S (1983) Population-density and tissue metal concentration of Lumbricids in forest soils near a brass mill. Environ Pollut Ser A 30:87–108

    Article  CAS  Google Scholar 

  • Blaser SA, Scheringer M, MacLeod M, Hungerbuhler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409

    Article  CAS  Google Scholar 

  • Bonkowski M, Griffiths BS, Ritz K (2000) Food preferences of earthworms for soil fungi. Pedobiologia 44:666–676

    Article  Google Scholar 

  • Chae YJ, Pham CH, Lee J, Bae E, Yi J, Gu MB (2009) Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquat Toxicol 94:320–327

    Article  CAS  Google Scholar 

  • Choi O, Hu ZQ (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588

    Article  CAS  Google Scholar 

  • Choi O, Deng KK, Kim NJ, Ross L, Surampalli RY, Hu ZQ (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074

    Article  CAS  Google Scholar 

  • Curry JP, Schmidt O (2006) The feeding ecology of earthworms—a review. Pedobiologia 50:463–477

    Article  CAS  Google Scholar 

  • Daoust CM, Bastien C, Deschenes L (2006) Influence of soil properties and aging on the toxicity of copper on compost worm and barley. J Environ Qual 35:558–567

    Article  CAS  Google Scholar 

  • Darwin C (1881) The formation of vegetable mould through the action of worms with observations on their habits. J. Murray, London

    Google Scholar 

  • Doube BM, Schmidt O, Killham K, Correll R (1997) Influence of mineral soil on the palatability of organic matter for lumbricid earthworms: a simple food preference study. Soil Biol Biochem 29:569–575

    Article  CAS  Google Scholar 

  • Eijsackers H, Beneke P, Maboeta M, Louw JPE, Reinecke AJ (2005) The implications of copper fungicide usage in vineyards for earthworm activity and resulting sustainable soil quality. Ecotoxicol Environ Saf 62:99–111

    Article  CAS  Google Scholar 

  • Findlay RH, Dobbs FC (1993) Quantitative description of microbial communities using lipid analysis. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbiology. FL Pages, Lewis Publishers, Boca Raton, pp 271–294

    Google Scholar 

  • Gongalsky KB, Belorustseva SA, Kuznetsova DM, Matyukhin AV, Pelgunova LA, Savin FA, Shapovalov AS (2009) Spatial avoidance of patches of polluted chernozem soils by soil invertebrates. Insect Sci 16:99–105

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered canomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  Google Scholar 

  • Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978

    Article  CAS  Google Scholar 

  • Horn MA, Schramm A, Drake HL (2003) The earthworm gut: an ideal habitat for ingested N2O-producing microorganisms. Appl Environ Microbiol 69:1662–1669

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Lindemann M, Simon M (2005) Experiences with novel approaches in earthworm testing alternatives. J Soils Sediments 5:233–239

    Article  CAS  Google Scholar 

  • ISO (2008) Soil quality—Avoidance test for determining the quality of soils and effects of chemicals on behavior—Part 1: test with earthworms (Eisenia fetida and Eisenia andrei). International Organization for Standardization, 17512-1

  • Klok C, Goedhart PW, Vandecasteele B (2007) Field effects of pollutants in dynamic environments. A case study on earthworm populations in river floodplains contaminated with heavy metals. Environ Pollut 147:26–31

    Article  CAS  Google Scholar 

  • Knapp MF, Mill PJ (1968) Chemoreception and efferent sensory impulses in Lumbricus terrestris Linn. Comp Biochem Physiol 25:523–528

    Google Scholar 

  • Kvitek L, Vanickova M, Panacek A, Soukupova J, Dittrich M, Valentova E, Prucek R, Bancirova M, Milde D, Zboril R (2009) Initial study on the toxicity of silver nanoparticles (NPs) against Paramecium caudatum. J Phys Chem C 113:4296–4300

    Article  CAS  Google Scholar 

  • Laban G, Nies LF, Turco RF, Bickham JW, Sepulveda MS (2010) The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology 19:185–195

    Article  CAS  Google Scholar 

  • Langdon CJ, Hodson ME, Arnold RE, Black S (2005) Survival, Pb-uptake and behaviour of three species of earthworm in Pb treated soils determined using an OECD-style toxicity test and a soil avoidance test. Environ Pollut 138:368–375

    Article  CAS  Google Scholar 

  • Laverack MS (1960) Tactile and chemical perception in earthworms-I. Responses to touch, sodium chloride, quinine and sugars. Comp Biochem Physiol 1:155–163

    Google Scholar 

  • Laverack MS (1961) Tactile and chemical perception in earthworms-II. Responses to acid pH solutions. Comp Biochem Physiol 2:22–34

    Google Scholar 

  • Loureiro S, Soares AMVM, Nogueira AJA (2005) Terrestrial avoidance behaviour tests as screening tool to assess soil contamination. Environ Pollut 138:121–131

    Article  CAS  Google Scholar 

  • Lukkari T, Haimi J (2005) Avoidance of Cu- and Zn-contaminated soil by three ecologically different earthworm species. Ecotoxicol Environ Saf 62:35–41

    Article  CAS  Google Scholar 

  • Lukkari T, Aatsinki M, Vaisanen A, Haimi J (2005) Toxicity of copper and zinc assessed with three different earthworm tests. Appl Soil Ecol 30:133–146

    Article  Google Scholar 

  • Mill PJ (1982) Recent developments in earthworm neurobiology. Comp Biochem Physiol Part A Physiol 73:641–661

    Article  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  Google Scholar 

  • Nahmani J, Hodson ME, Black S (2007) Effects of metals on life cycle parameters of the earthworm Eisenia fetida exposed to field-contaminated, metal-polluted soils. Environ Pollut 149:44–58

    Article  CAS  Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964

    Article  CAS  Google Scholar 

  • PA USE (1996) Method 3052: microwave assisted acid digestion of siliceous and organically based matrices. United States Environmental Protection Agency, Washington, DC USA

    Google Scholar 

  • PA USE (1998) Method 6020a: inductively coupled plasma—mass spectrometry. United States Environmental Protection Agency, Washington, DC USA

    Google Scholar 

  • Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253

    Article  CAS  Google Scholar 

  • Panacek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V, Hamal P, Zboril R, Kvitek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30:6333–6340

    Article  CAS  Google Scholar 

  • Parker GH, Metcalf CR (1906) The reactions of earthworms to salts: a study in protoplasmic stimulation as a basis of interpreting the sense of taste. Am J Physiol 17:0055–0074

    CAS  Google Scholar 

  • Roh JY, Sim SJ, Yi J, Park K, Chung KH, Ryu DY, Choi J (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43:3933–3940

    Article  CAS  Google Scholar 

  • Rombke J, Jansch S, Didden W (2005) The use of earthworms in ecological soil classification and assessment concepts. Ecotoxicol Environ Saf 62:249–265

    Article  CAS  Google Scholar 

  • Saxe JK, Impellitteri CA, Peijnenburg WJGM, Allen HE (2001) Novel model describing trace metal concentrations in the earthworm, Eisenia andrei. Environ Sci Technol 35:4522–4529

    Article  CAS  Google Scholar 

  • Schutter ME, Dick RP (2000) Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci Soc Am J 64:1659–1668

    Article  CAS  Google Scholar 

  • Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2010a) Toxicity of silver nanoparticles to the earthworm (Eisenia fetida): the role of particle size and soil type. Soil Sci Soc Am J (in press). doi:10.2136/sssaj2010.0127nps

  • Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2010b) Role of particle surface coating for bioaccumulation and reproductive toxicity of silver in earthworms (Eisenia fetida) exposed to silver nanoparticles. Nanotoxicology (in Press) doi:10.3109/17435390.2010.537382

  • Sokal RR, Rohlf FJ (2003) Biometry, 3rd edn. W. H. Freeman and Company, New York

    Google Scholar 

  • Sousa A, Pereira R, Antunes SC, Cachada A, Pereira E, Duarte AC, Goncalves F (2008) Validation of avoidance assays for the screening assessment of soils under different anthropogenic disturbances. Ecotoxicol Environ Saf 71:661–670

    Article  CAS  Google Scholar 

  • Spurgeon DJ, Lofts S, Hankard PK, Toal M, McLellan D, Fishwick S, Svendsen C (2006) Effect of pH on metal speciation and resulting metal uptake and toxicity for earthworms. Environ Toxicol Chem 25:788–796

    Article  CAS  Google Scholar 

  • Stephenson GL, Kaushik A, Kaushik NK, Solomon KR, Steele T, Scroggins RP (1998) Use of an avoidance-response test. In: Sheppard SC, Bembridge J, Holmstrup M, Posthuma L (eds) Advances in earthworm ecotoxicology. SETAC Press, Pensacola

    Google Scholar 

  • Unrine JM, Hopkins WA, Romanek CS, Jackson BP (2007) Bioaccumulation of trace elements in omnivorous amphibian larvae: implications for amphibian health and contaminant transport. Environ Pollut 149(2):182–192

    Article  CAS  Google Scholar 

  • Van Zwieten L, Rust J, Kingston T, Merrington G, Morris S (2004) Influence of copper fungicide residues on occurrence of earthworms in avocado orchard soils. Sci Total Environ 329:29–41

    Article  Google Scholar 

  • Vijver MG, Vink JPM, Miermans CJH, van Gestel CAM (2003) Oral sealing using glue: a new method to distinguish between intestinal and dermal uptake of metals in earthworms. Soil Biol Biochem 35:125–132

    Article  CAS  Google Scholar 

  • Vorobeichik EL (1998) Populations of earthworms (Lumbricidae) in forests of the middle urals in conditions of pollution by discharge from copper works. Russ J Ecol 29:85–91

    Google Scholar 

  • Wentsel RS, Guelta MA (1988) Avoidance of brass powder-contaminated soil by the earthworm, Lumbricus terrestris. Environ Toxicol Chem 7:241–243

    CAS  Google Scholar 

  • Wright MA (1972) Factors governing ingestion by earthworm Lumbricus-Terrestris (L), with special reference to apple leaves. Ann Appl Biol 70:175–188

    Google Scholar 

  • Yeardley RB, Lazorchak JM, Gast LC (1996) The potential of an earthworm avoidance test for evaluation of hazardous waste sites. Environ Toxicol Chem 15:1532–1537

    Article  CAS  Google Scholar 

  • Yeo MK, Kang M (2008) Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bull Korean Chem Soc 29:1179–1184

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank M. Lacey, E. Harding and L. Wang for assistance with sample processing, S. Hunyadi for providing some of the nanoparticles studied, J. Kupper for performing FAME analysis and J. Nelson for assistance with GC analysis. Major funding for this research was provided by the United States Environmental Protection Agency (U.S. EPA) Science to Achieve Results Grant RD 833331. This material is also based in part upon work supported by the National Science Foundation (NSF), the U.S. EPA and the Center for the Environmental Implications of NanoTechnology (CEINT) EF-0830093. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF or the EPA. This work has not been subjected to EPA review and no official endorsement should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason M. Unrine.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 199 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shoults-Wilson, W.A., Zhurbich, O.I., McNear, D.H. et al. Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida). Ecotoxicology 20, 385–396 (2011). https://doi.org/10.1007/s10646-010-0590-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-010-0590-0

Keywords

Navigation