Skip to main content

Advertisement

Log in

Genotoxic effects of the fungicide thiophanate-methyl on Podarcis sicula assessed by micronucleus test, comet assay and chromosome analysis

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The increasing use of pesticides in modern agriculture has raised the need to evaluate their potential threat to animal and human health. In the present study, the genotoxic effects of environmentally relevant exposure to the fungicide thiophanate-methyl (TM) were assessed in the lizard Podarcis sicula (Reptilia, Lacertidae) using micronucleus test, chromosome aberration analysis and single-cell gel electrophoresis (comet) assay. The number of micronuclei increased significantly with exposure time in lizard specimens exposed to 1.5% TM for 30–40 days. In situ hybridization with the specific HindIII centromeric satellite was positive in 18.7% of the micronuclei observed, suggesting an aneugenic effect of TM during mitosis. DNA damage, evaluated by the comet assay, documented a significant gain in comet length in relation to exposure time that was paralleled by a reduction in head size. Finally, cytogenetic analysis showed a significant increase in chromosome aberrations in exposed animals compared with controls. Our data suggest that long-term TM exposure induces a genomic damage that is positively correlated to exposure time. If such genotoxic effects arise so clearly in an ectothermal vertebrate, such as P. sicula, prolonged exposure TM must be considered as a cytogenetic hazard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams MR, Moss MO (2008) Food Microbiology. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Al-Sabti K, Metcalfe CD (1995) Fish micronuclei for assessing genotoxicity in water. Mutat Res 323:121–135

    Google Scholar 

  • Andò S, Panno ML, Ciarcia G, Imbrogno E, Buffon M et al (1990) Plasma sex hormone concentrations during the reproductive cycle in the male lizard, Podarcis sicula. J Reprod Fertil 90:353–960

    Article  Google Scholar 

  • Barale R, Scapoli C, Meli C, Casini D, Minunni M, Marrazzini A, Loprieno N, Barrai I (1993) Cytogenetic effects of benzimidazoles in mouse bone marrow. Mutat Res 300(1):15–28

    Article  CAS  Google Scholar 

  • Bologna MA, Capula M, Carpaneto GM (2000) Anfibi e rettili del Lazio, Palombi, Roma

  • Bolognesi C (2003) Genotoxicity of pesticides: a review of human biomonitoring studies. Mutat Res 543(3):251–272

    Article  CAS  Google Scholar 

  • Bradshaw VA, McEntee K (1989) DNA damage activates transcription and transposition of yeast Ty retrotransposons. Mol Gen Genet 218:465–474

    Article  CAS  Google Scholar 

  • Bryan AM, Olafsson PG, Stone WB (1987) Disposition of low and high environmental concentrations of PCBs in snapping turtle tissues. Bull Environ Contam Toxicol 38:1000–1005

    Article  CAS  Google Scholar 

  • Buschini A, Martino A, Gustavino B, Monfrinotti M, Poli P, Rossi C, Santoro M, Dorr AJM, Rizzoni M (2004) Comet assay and micronucleus test in circulating erytrocytes of Cyprinus carpio specimens esposed in situ to lake waters treated with disinfectants for potabilization. Mutat Res 557:119–129

    CAS  Google Scholar 

  • Canton JH (1976) The toxicity of benomyl, thiophanate-methyl, and BCM to four freshwater organisms. Bull Environ Contam Toxicol 16:214–218

    Article  CAS  Google Scholar 

  • Capaldo A, Gay F, De Falco M, Virgilio F, Valiante S, Laforgia V, Varano L (2007) The newt Triturus carnifex as a model for monitoring the ecotoxic impact of the fungicide thiophanate methyl: adverse effects on the adrenal gland. Comp Biochem Physiol 143:86–93

    Google Scholar 

  • Capriglione T, Odierna G, Caputo V, Canapa A, Olmo E (2002) Characterization of a Tc1-like transposon in the Antarctic ice-fish, Chionodraco hamatus. Gene 295:193–198

    Article  CAS  Google Scholar 

  • Clark Dr, Bickham JW, Baker L, Cowman DF (2000) Environmental contaminants in Texas, USA, wetland reptiles: evaluation using blood samples. Environ Toxicol Chem 19:2259–2265

    Article  CAS  Google Scholar 

  • De Falco M, Sciarrillo R, Capaldo A, Russo T, Gay F, Valiante S, Varano L, Laforgia V (2007) The Effects of the Fungicide Methyl Thiophanate on Adrenal Gland Morphophysiology of the Lizard, Podarcis sicula. Arch Environ Contam Toxicol 53:241–248

    Article  CAS  Google Scholar 

  • Ergene S, Çelik A, Çavaş T, Kaya F (2007) Genotoxic biomonitoring study of population residing in pesticide contaminated regions in Göksu Delta: micronucleus, chromosomal aberrations and sister chromatid exchanges. Environ Int 33:877–885

    Article  CAS  Google Scholar 

  • Fuchs A, Van Der Berg GA, Davidse LCA (1972) Comparison of benomyl and thiophanates with respect to some chemical and systemic fungitoxic characteristics. Pest Biochem Physiol 2(2):191–205

    Article  CAS  Google Scholar 

  • Gedik CM, Even SWB, Collins AR (1992) Single cell gel electrophoresis applied to analysis of UV-C damage and its repair in human cell. Int J Radiat Biol 62:313–320

    Article  CAS  Google Scholar 

  • Gorman CG (1969) New chromosome data of 12 species of lacertid lizards. J Herpetol 3:49–54

    Article  Google Scholar 

  • Guerrero AA, Gamero MC, Trachana V, Fütterer A, Pacios-Bras C, Díaz-Concha NP, Cigudosa JC, Martínez-A C, van Wely KH (2010) Centromere-localized breaks indicate the generation of DNA damage by the mitotic spindle. Proc Natl Acad Sci USA 107(9):4159–4164

    Article  CAS  Google Scholar 

  • Hall RJ, Clark DR Jr (1982) Responses of the iguanid lizard Anolis carolinensis to four organophosphorus pesticides. Environ Pollut 28:45–52

    Article  CAS  Google Scholar 

  • Hall RJ, Henry PFP (1992) Assessing effects of pesticides on amphibians and reptiles: status and needs. Herpetol J 2:65–71

    Google Scholar 

  • Hashimoto Y, Mori T, Ohnuma N, Noguchi T (1972) Some pharmacologic properties of a new fungicide, thiophanate–methyl. Toxicol Appl Pharmacol 23:616–622

    Article  CAS  Google Scholar 

  • He X, Asthana S, Sorger PK (2000) Transient sister chromatid separation and elastic deformation of chromosomes during mitosis in budding yeast. Cell 101:763–775

    Article  CAS  Google Scholar 

  • Hrelia P, Fimognari C, Vigagni F, Maffei F, Cantelli-Forti G (1996) A cytogenetic approach to the study of genotoxic effects of fungicides: an in vitro study in lymphocyte cultures with thiophanate-methyl. ATLA 24:597–601

    Google Scholar 

  • In den Bosch HA, Odierna G, Aprea G, Barucca M, Canapa A, Capriglione T, Olmo E (2003) Karyological and genetic variation in Middle Eastern lacertid lizards, Lacerta laevis and the Lacerta kulzeri complex: a case of chromosomal allopatric speciation. Chromosome Res 11:165–178

    Article  CAS  Google Scholar 

  • Kirsch-Volders M, Elhajouji A, Cundari E, Hummelen PV (1997) The in vitro micronucleus test: a multi-endpoint assay to detect simultaneously mitotic delay, apoptosis, chromosome breakage, chromosome loss and non-disjunction. Mutat Res 392:19–30

    CAS  Google Scholar 

  • Landolt ML, Kokan RM (1983) Fish cell cytogenetics: a measure of genotoxic effects of environmental pollutants. In: Nriagu JO (ed) Aquatic toxicology. Wiley, New York, pp 335–352

    Google Scholar 

  • Li J, Liu X, Ren C, Li J, Sheng F, Zhide Hu Z (2009) In vitro study on the interaction between thiophanate methyl and human serum albumin. J Photochem Photobiol 94(B):158–163

    CAS  Google Scholar 

  • Licht LE, Grant KP (1997) The effects of ultraviolet radiation on the biology of Amphibians. Am Zool 37:140–147

    Google Scholar 

  • Makita T, HashimotoY NoguchiT (1973) Mutagenic, cytogenetic and teratogenetic studies on thiophanate methyl. Toxicol Appl Pharmacol 24(2):206–215

    Article  CAS  Google Scholar 

  • Manzo C, Zerani M, Gobetti A, Di Fiore MM, Angelini F (1994) Is corticosterone involved in the reproductive processes of the male lizard, Podarcis s. sicula? Horm Behav 28:117–129

    Article  CAS  Google Scholar 

  • Maranghi F, Macrì C, Ricciardi C, Stazi AV, Rescia M, Mantovani A (2003) Histological and histomorphometric alterations in thyroid MT Effects on Podarcis sicula Adrenal Glands 247 and adrenals of CD rat pups exposed in utero to methyl thiophanate. Reprod Toxicol 17:617–623

    Article  CAS  Google Scholar 

  • Martinez-Lopez E, Sousa AR, Marìa-Mojica P, Gomez-Ramirez P et al (2010) Blood δ-ALAD, lead and cadmium concentrations in spur-thighed tortoises (Testudo graeca) from Southeastern Spain and Northern Africa. Ecotoxicology 19:670–677

    Article  CAS  Google Scholar 

  • Matson CL, Palatnikov G, Islamzadeh A, Mcdonald TJ, Autenrieth RL, Donnelly KC, Bickham JW (2005) Chromosomal damage in two species of aquatic turtles (Emys orbicularis and Mauremys caspica) inhabiting sites in Azerbaijan. Ecotoxicology 14:513–525

    Article  CAS  Google Scholar 

  • Matson CL, Gillespie AM, McCarthy C, Mcdonald TJ, Bickham JW, Sullivan R, Donnelly KC (2009) Wildlife Toxicology: biomarkers of genotoxic exposures at hazardous waste site. Ecotoxicology 18:886–898

    Article  CAS  Google Scholar 

  • Noguchi T, Hashimoto Y (1970) Toxicological evaluation of thiophanate methyl. Unpublished report from the Nisso Institute for Life Sciences submitted by Nippon Soda Co. Ltd

  • Paquin CE, Williamson VM (1984) Temperature effects on the rate of Ty transposition. Science 226:53–55

    Article  CAS  Google Scholar 

  • Russo C, Rocco L, Morescalchi MA, Stingo V (2004) Assessment of environmental stress by micronucleus test and the Comet assay on the genome of teleost populations from two natural environments. Ecotoxicol Environ Saf 57:168–174

    Article  CAS  Google Scholar 

  • Sailaja N, Chandrasekhar M, Rekhadevi PV, Mahboob M, Rahman MF, Vuyyuri Saleha B, Danadevi K, Hussain SA, Paramjit Grover (2006) Genotoxic evaluation of workers employed in pesticide production. Mutat Res 609:74–80

    CAS  Google Scholar 

  • Saquib Q, Al-Khedhairy-Abdulaziz A, Al-Arifi S, Dhawan A, Musarrat J (2009) Assessment of methyl thiophanate–Cu (II) induced DNA damage in human lymphocytes. Toxicol In Vitro 23:848–854

    Article  CAS  Google Scholar 

  • Sciarrillo R, De Falco M, Virgilio F, Laforgia V, Capaldo A, Gay F, Valiante S, Varano L (2008) Morphological and functional changes in the thyroid gland of methyl thiophanate-injected lizards, Podarcis sicula. Arch Environ Contam Toxicol 55:254–261

    Article  CAS  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  Google Scholar 

  • Sparling DW, Matson C, Bickham J, Doelling-Brown P (2006) Toxicity of glyphosate as Glypro and LI700 to red- eared slider (Trachemys scripta elegans) embryos and early hatchlings. Environ Toxicol Chem 25:2768–2774

    Article  CAS  Google Scholar 

  • Strunjak-Perovic I, Lisicic D, Coz-Rakovac R, Topic Popovic N, Jadan N, Benkovic V, Tadic Z (2010) Evaluation of micronucleus and erythrocytic nuclear abnormalities in Balkan whip snake Hierophis gemonensis. Ecotoxicology 19:1460–1465

    Article  CAS  Google Scholar 

  • Talent LG, Dumont JN, Bantle JA, Janz DM, Talent SG (2002) Evaluation of western fence lizards (Sceloporus occidentalis) and eastern fence lizards (Sceloporus undulates) as laboratory reptile models for toxicological investigations. Environ Toxicol Chem 21(5):899–905

    CAS  Google Scholar 

  • Tice RR (1995) The single cell gel/comet assay: a microgel electrophoretic technique for the detection of DNA damage and repair in individual cells. In: Philips DH, Venitt S (eds) Environmental mutagenesis. Bios Scientific Publishers, Oxford, pp 315–339

    Google Scholar 

  • Tice RR, Argurell E, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) The single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35(3):206–221

    Article  CAS  Google Scholar 

  • Traina ME, Fazzi P, Macrì C, Ricciardi C, Stazi AV, Urbani E, Mantovani A (1998) In vivo studies on possible adverse effects on reproduction of the fungicide methyl thiophanate. J Appl Toxicol 18:241–248

    Article  CAS  Google Scholar 

  • Yunis JJ, Soreng AL (1984) Constitutive fragile sites and cancer. Science 226:1199–1204

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian M.U.R.S.T. (Ministry of the University and Scientific and Technological Research)-PRIN 2003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Capriglione.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capriglione, T., De Iorio, S., Gay, F. et al. Genotoxic effects of the fungicide thiophanate-methyl on Podarcis sicula assessed by micronucleus test, comet assay and chromosome analysis. Ecotoxicology 20, 885–891 (2011). https://doi.org/10.1007/s10646-011-0655-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-011-0655-8

Keywords

Navigation