Skip to main content
Log in

Recovery potential of periphytic biofilms translocated in artificial streams after industrial contamination (Cd and Zn)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Metal wastes can significantly disturb aquatic communities, particularly photosynthetic organisms, the main primary producers in freshwater running ecosystems. In this study, biofilms and diatoms were used as bioindicators to characterize the kinetics of biofilm recovery. An experimental decontamination study was conducted under laboratory conditions, after biofilm colonisation at a site subject to discharge of industrial metals (Zn and Cd) and in parallel at an upstream site, metal-free, considered as a control. After 24 days of colonisation, biofilms were translocated and maintained in the laboratory for 56 days under clean conditions (control and decontamination) or metal contamination. Various tests were conducted from the community level—measures of metal bioaccumulation, cell densities and taxonomic investigations, to the individual level—measures of teratological forms. After 56 days of decontamination, Zn and Cd concentrations in decontaminated biofilms showed a sharp decline, respectively ranging from 6.7 ± 2 to 4 ± 2.5 mg Zn g−1 DW and from 207.6 ± 24.5 to 45.4 ± 9.9 μg Cd g−1 DW. However, at the end of the experiment bioaccumulations remained significantly higher than concentrations in control biofilms. Despite a diatom evolution in biofilm assemblages, taxonomic inventories did not demonstrate a complete restoration of diatom communities in biofilms under decontamination conditions compared with controls, since metal-resistant species initially present after colonisation at the contaminated site, such as Eolimna minima, persisted in high abundance in decontaminated biofilms. Biofilms kept under metal pressure showed very high bioaccumulation capacities and a sharp decline of species diversity which allowed identification of some resistant species. Regarding these first results on the behaviour of diatom biofilms under experimental decontamination conditions, improvement of the natural hydrosystem’s chemical state appears quickly, but an eventual return to good ecological status appears delayed, with the persistence of metal-tolerant species even after 56 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bérard A, Dorigo U, Mercier I, Becker-van Slooten K, Grandjean D, Leboulanger C (2003) Comparison of the ecotoxicological impact of the triazines Irgarol 1051 and atrazine on microalgal cultures and natural microalgal communities in Lake Geneva. Chemosphere 53(8):935–944

    Article  Google Scholar 

  • Brand LE, Murphy LS, Guillard RRL, Ht Lee (1981) Genetic variability and differentiation in the temperature niche component of the diatom Thalassiosira pseudonana. Mar Biol 62(2–3):103–110

    Article  CAS  Google Scholar 

  • Cattaneo A, Asioli A, Comoli P, Manca M (1998) Organisms’ response in a chronically polluted lake supports hypothesized link between stress and size. Limnol Oceanogr 43(8):1938–1943

    Google Scholar 

  • Cattaneo A, Couillard Y, Wunsam S, Courcelles M (2004) Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in Lac Dufault (Québec, Canada). J Paleolimnol 32(2):163–175

    Article  Google Scholar 

  • Coste M, Boutry S, Tison-Rosebery J, Delmas F (2008) Improvements of the biological diatom index (BDI): description and efficiency of the new version (BDI-2006). Ecol Indic 9(4):621–650

    Article  Google Scholar 

  • Coynel A, Schafer J, Dabrin A, Girardot N, Blanc G (2007) Groundwater contributions to metal transport in a small river affected by mining and smelting waste. Water Res 41(15):3420–3428

    Article  CAS  Google Scholar 

  • Dauta A, Brunei L, Guerri MM (1982) Détermination expérimentale, des paramètres liés à l’assimilation de l’azote et du phosphore par Scenedesmus crassus. Ann Limnol 18:33–40

    Article  Google Scholar 

  • Dorigo U, Bourrain X, Bérard A, Leboulanger C (2004) Seasonal changes in the sensitivity of river microalgae to atrazine and isoproturon along a contamination gradient. Sci Total Environ 318(1–3):101–114

    CAS  Google Scholar 

  • Dorigo U, Lefranc M, Leboulanger C, Montuelle B, Humbert JF (2009) Spatial heterogeneity of periphytic microbial communities in a small pesticide-polluted river. FEMS Microbiol Ecol 67(3):491–501

    Article  CAS  Google Scholar 

  • Dorigo U, Berard A, Rimet F, Bouchez A, Montuelle B (2010) In situ assessment of periphyton recovery in a river contaminated by pesticides. Aquat Toxicol 98(4):396–406

    Article  CAS  Google Scholar 

  • Duong TT, Morin S, Herlory O, Feurtet-Mazel A, Coste M, Boudou A (2008) Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms. Aquat Toxicol 90(1):19–28

    Article  CAS  Google Scholar 

  • Duong TT, Morin S, Coste M, Herlory O, Feurtet-Mazel A, Boudou A (2010) Experimental toxicity and bioaccumulation of cadmium in freshwater periphytic diatoms in relation with biofilm maturity. Sci Total Environ 408(3):552–562

    Article  CAS  Google Scholar 

  • Falasco E, Bona F, Ginepro M, Hlùbikovà D, Hoffmann L, Ector L (2009) Morphological abnormalities of diatom silica walls in relation to heavy metal contamination and artificial growth conditions. Water SA 35(5):595–606

    Article  CAS  Google Scholar 

  • Fang HHP, Xu LC, Chan KY (2002) Effects of toxic metals and chemicals on biofilm and biocorrosion. Water Res 36(19):4709–4716

    Article  CAS  Google Scholar 

  • Feurtet-Mazel A, Gold C, Coste M, Boudou (2003) A study of periphytic diatoms communities exposed to metallic contamination through complementary field and laboratory experiments. J Phys IV 107(1): 467–470

  • Gélabert A, Pokrovsky OS, Schott J, Boudou A, Feurtet-Mazel A (2007) Cadmium and lead interaction with diatom surfaces: a combined thermodynamic and kinetic approach. Geochim et Cosmochim Acta 71(15):3698–3716

    Article  Google Scholar 

  • Granetti B (1968) Comportamento Di Un Carattere Teratologico Comparso in Navicula Minima Grun. G Bot Italiano 102(6):507–513

    Article  Google Scholar 

  • Hynynen J, Palomäki A, Meriläinen JJ, Witick A, Mäntykoski K (2004) Pollution history and recovery of a boreal lake exposed to a heavy bleached pulping effluent load. J Paleolimnol 32(4):351–374

    Article  Google Scholar 

  • Ivorra N, Hettelaar J, Tubbing GMJ, Kraak MHS, Sabater S, Admiraal W (1999) Translocation of microbenthic algal assemblages used for in situ analysis of metal pollution in rivers. Arch Environ Contam Toxicol 37(1):19–28

    Article  CAS  Google Scholar 

  • Kim Tiam S, Feurtet-Mazel A, Delmas F, Mazzella N, Morin S, Daffe G, and Gonzalez P (2012) Development of q-PCR approaches to assess water quality: effects of cadmium on gene expression of the diatom Eolimna minima. Water Res. doi:10.1016/j.watres.2011.11.005

  • Krammer K, Lange-Bertalot H (1986/1991) Bacillariophyceae 1. Teil: Naviculaceae. 876 p.; 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae, 596 p.; 3. Teil: Centrales, Fragilariaceae, Eunotiaceae, 576 p.; 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. G. Fischer Verlag, Stuttgart, p 437

  • Lacaze E, Devaux A, Mons R, Bony S, Garric J, Geffard A, Geffard O (2011) DNA damage in caged Gammarus fossarum amphipods: a tool for freshwater genotoxicity assessment. Environ Pollut 159(6):1682–1691

    Article  CAS  Google Scholar 

  • Lavoie I, Hamilton PB, Campeau S, Grenier M, Dillon PJ (2008) Guide d’identification des diatomées des rivières de l’Est du Canada, Québec

  • Lavoie M, Le Faucheur S, Fortin C, Campbell PGC (2009) Cadmium detoxification strategies in two phytoplankton species: metal binding by newly synthesized thiolated peptides and metal sequestration in granules. Aquat Toxicol 92(2):65–75

    Article  CAS  Google Scholar 

  • Lecointe C, Coste M, Prygiel J (1993) Omnidia—software for taxonomy, calculation of diatom indexes and inventories management. Hydrobiologia 269:509–513

    Article  Google Scholar 

  • McCormick PV, Cairns J (1994) Algae as indicators of environmental-change. J Appl Phycol 6(5–6):509–526

    Article  Google Scholar 

  • Meylan S, Behra R, Sigg L (2004) Influence of metal speciation in natural freshwater on bioaccumulation of copper and zinc in periphyton: a microcosm study. Environ Sci Technol 38(11):3104–3111

    Article  CAS  Google Scholar 

  • Morin S, Duong TT, Herlory O, Feurtet-Mazel A, Coste M (2007) Cadmium toxicity and bioaccumulation in freshwater biofilms. Arch Environ Contam Toxicol 54(2):173–186

    Article  Google Scholar 

  • Morin S, Pesce S, Tlili A, Coste M, Montuelle B (2009) Recovery potential of periphytic communities in a river impacted by a vineyard watershed. Ecol Indic 10(2):419–426

    Article  Google Scholar 

  • Pokrovsky O, Martinez R, Feurtet-Mazel A, Morin S, Baudrimont M, Duong T, Coste M (2010) Experimental study of cadmium interaction with periphytic biofilms. Appl Geochem 25:247–418

    Article  Google Scholar 

  • Pusch M, Fiebig D, Brettar I, Eisenmann H, Ellis BK, Kaplan LA, Lock MA, Naegeli MW, Traunspurger W (1998) The role of micro-organisms in the ecological connectivity of running waters. Freshw Biol 40(3):453–495

    Article  Google Scholar 

  • Reavie ED, Jicha TM, Angradi TR, Bolgrien DW, Hill BH (2009) Algal assemblages for large river monitoring: comparison among biovolume, absolute and relative abundance metrics. Ecol Indic 10(2):167–177

    Article  Google Scholar 

  • Sanders JG, Cibik SJ (1988) Response of Chesapeake Bay phytoplankton communities to low levels of toxic substances. Mar Pollut Bull 19(9):439–444

    Article  CAS  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication, vol III. University of Illinois Press, Urbana

  • Sommer U (1981) The role of r- and K-selection in the succession of phytoplankton in Lake Constance. Acta Oecol Gener 2:327–342

    Google Scholar 

  • Stevenson RJ, Peterson CG (1989) Variation in benthic diatom (Bacillariophyceae) immigration with habitat characteristics and cell morphology. J Phycol 25(1):120–129

    Article  Google Scholar 

  • Stevenson RJ, Peterson CG (1991) Emigration and immigration can be important determinants of benthic diatom assemblages in streams. Freshw Biol 26(2):279–294

    Article  Google Scholar 

  • Tlili A, Corcoll N, Bonet B, Morin S, Montuelle B, Bérard A, Guasch H (2011) In situ spatio-temporal changes in pollution-induced community tolerance to zinc in autotrophic and heterotrophic biofilm communities. Ecotoxicology 20(8):1823–1839

    Article  CAS  Google Scholar 

  • Ueshima M, Ginn BR, Haack EA, Szymanowski JES, Fein JB (2008) Cd adsorption onto Pseudomonas putida in the presence and absence of extracellular polymeric substances. Geochim et Cosmochim Acta 72(24):5885–5895

    Article  CAS  Google Scholar 

  • Wood AM, Leatham T, Manhart JR, McCourt RM (1992) The species concept in phytoplankton ecology. J Phycol 28(6):723–729

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Agence Nationale de la Recherche (ANR) through its programme CES (Contamination Ecosystèmes Santé) under the reference ANR 08-CES-014 and developed in the RE-SYST project. The authors would like to thank Véronique Duflo, Henri Bouillard, from the EPOC laboratory, and Soizic Morin from the Cemagref/Irstea laboratory, for their support in field work, and Muriel Bonnet and Maryse Boudigues from the Cemagref/Irstea laboratory for the nutrient analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adeline Arini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arini, A., Feurtet-Mazel, A., Maury-Brachet, R. et al. Recovery potential of periphytic biofilms translocated in artificial streams after industrial contamination (Cd and Zn). Ecotoxicology 21, 1403–1414 (2012). https://doi.org/10.1007/s10646-012-0894-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-012-0894-3

Keywords

Navigation