Skip to main content
Log in

Evaluation of 4-nonylphenol and bisphenol A toxicity using multiple molecular biomarkers in the water flea Daphnia magna

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Alkylphenols are well-known endocrine disruptors and may cause developmental and reproductive disorders in aquatic organisms. Daphnia magna is commonly used in ecotoxicological studies as a promising model species to investigate the effects of endocrine distruptors. In the present study, transcriptional modulation of eleven potential molecular indicators related to detoxification, antioxidant, development, and cellular stress was analyzed in D. magna exposed to different concentrations of bisphenol A (BPA) and 4-nonylphenol (4-NP) for 24 h and 48 h, using real-time qPCR. A hierarchical clustering analysis was applied to investigate relations among molecular markers depending on the compound, exposure duration, and concentration. Our findings suggested that GSH-related systems and stress proteins may be involved in cellular defense against BPA and 4-NP-mediated toxicity with different modes of action. Furthermore, these compounds may interrupt molting and reproduction in daphnids. In particular, D. magna GSH-related genes seem to be strongly affected by 4-NP exposure, indicating their potential as molecular biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barbosa IA, Martins RM, Sá e Melo ML, Soares AMVM (2003) Acute and chronic toxicity of dimethyl sulfoxide to Daphnia magna. Bull Environ Contam Toxicol 70:1264–1268

    Article  CAS  Google Scholar 

  • Bhattacharjee A, Chakraborty K, Shukla A (2017) Cellular copper homeostasis: current concepts on its interplay with glutathione homeostasis and its implication in physiology and human diseases. Metallomics 9:1376–1388

    Article  CAS  Google Scholar 

  • Brennan SJ, Brougham CA, Roche JJ, Fogarty AM (2006) Multi-generational effects of four selected environmental oestrogens on Daphnia magna. Chemosphere 64:49–55

    Article  CAS  Google Scholar 

  • Colbourne JK, Pfrender ME, Gilbert D et al. (2011) The ecoresponsive genome of Daphnia pulex. Science 331:555–561

    Article  CAS  Google Scholar 

  • Dagnino A, Allen JI, Moore MN, Broeg K, Canesi LV, iarengo A (2007) Development of an expert system for the integration of biomarker responses in mussels into an animal health index. Biomarkers 12:155–172

    Article  CAS  Google Scholar 

  • EN ISO 6341 (2012) Water quality—determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea)—acute toxicity test. EN ISO 6341:2012. European Committee for Standardization, Brussels

  • Forget-Leray J, Landriau I, Minier C, Leboulenger F (2005) Impact of endocrine toxicants on survival, development, and reproduction of the estuarine copepod Eurytemora affinis (Poppe). Ecotoxicol Environ Saf 60:288–294

    Article  CAS  Google Scholar 

  • Grignard E, Lapenna S, Bremer S (2012) Weak estrogenic transcriptional activities of Bisphenol A and Bisphenol S. Toxicol Vitr 26:727–731

    Article  CAS  Google Scholar 

  • Gross MY, Maycock DS, Thorndyke MC, Morritt D, Crane M (2001) Abnormalities in sexual development of the amphipod Gammarus pulex (L.) found below sewage treatment works. Environ Toxicol Chem 20:1792–1797

    Article  CAS  Google Scholar 

  • Handler AM, Postlethwait JH (2005) Regulation of vitellogenin synthesis in Drosophila by ecdysterone and juvenile hormone. J Exp Zool 206:247–254

    Article  Google Scholar 

  • Hannas BR, Wang YH, Thomson S, Kwon G, Li H, LeBlanc GA (2011) Regulation and dysregulation of vitellogenin mRNA accumulation in daphnids (Daphnia magna). Aquat Toxicol 101:351–357

    Article  CAS  Google Scholar 

  • Holmgren A, Johansson C, Berndt C, Lonn ME, Hudemann C, Lillig CH (2005) Thiol redox control via thioredoxin and glutatredoxin systems. Biochem Soc Trans 33:1375–1377

    Article  CAS  Google Scholar 

  • Hwang DS, Lee JS, Lee KW et al. (2010) Cloning and expression of ecdysone receptor (EcR) from the intertidal copepod, Tigriopus japonicus. Comp Biochem Physiol C 151(3):303–312

    Google Scholar 

  • Jeong SW, Lee SM, Yum SS, Iguchi T, Seo YR (2013) Genomic expression responses toward bisphenol-A toxicity in Daphnia magna in terms of reproductive activity. Mol Cell Toxicol 9:149–158

    Article  CAS  Google Scholar 

  • Kang Y, Yan X, Li L, Zhang Q, Zeng L, Luo J (2014) Daphnia magna may serve as a powerful tool in screening endocrine disruption chemicals (EDCs). Environ Sci Technol 48:881–882

    Article  CAS  Google Scholar 

  • Kato Y, Kobayashi K, Oda S, Tatarazako N, Watanabe H, Iguchi T (2007) Cloning and characterization of the ecdysone receptor and ultraspiracle protein from the water flea Daphnia magna. J Endocrinol 193:183–194

    Article  CAS  Google Scholar 

  • Kim H, Yim B, Bae C, Lee YM (2017) Acute toxicity and antioxidant responses in the water flea Daphnia magna to xenobiotics (cadmium, lead, mercury, bisphenol A, and 4-nonylphenol). Toxicol Environ Health Sci 9:41–49

    Article  Google Scholar 

  • Lauritano C, Procaccini G, Ianora A (2012) Gene expression patterns and stress response in marine copepods. Mar Environ Res 76:22–31

    Article  CAS  Google Scholar 

  • Li X, Lin L, Luan T, Yang L, Lan C (2008) Effects of landfill leachate effluent and bisphenol A on glutathione and glutathione-related enzymes in the gills and digestive glands of the freshwater snail Bellamya purificata. Chemosphere 70:1903–1909

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Matozzo V, Gagné F, Marin MG, Ricciardi F, Blaise C (2008) Vitellogenin as a biomarker of exposure to estrogenic compounds in aquatic invertebrates: a review. Environ Int 34:531–545

    Article  CAS  Google Scholar 

  • Moore MN, Depledge MH, Readman JW, Leonard DP (2004) An integrated biomarker-based strategy for ecotoxicological evaluation of risk in environmental management. Mutat Res Fund Mol M 552:247–268

    Article  CAS  Google Scholar 

  • Mu X, Rider CV, Hwang GS, Hoy H, LeBlanc GA (2005) Covert signal disruption: anti-ecdysteroidal activity of bisphenol A involves cross talk between signalling pathways. Environ Toxicol Chem 24:146–152

    Article  CAS  Google Scholar 

  • Nair PMG, Park SY, Choi J (2011) Expression of catalase and glutathione S-transferase genes in Chironomus riparius on exposure to cadmium and nonylphenol. Comp Biochem Physiol C 154(4):399–408

    CAS  Google Scholar 

  • Park SY, Choi J (2009) Genotoxic effects of nonylphenol and bisphenol A exposure in aquatic biomonitoring species: freshwater crustacean, Daphnia magna, and aquatic midge, Chironomus riparius. Bull Environ Contam Toxicol 83:463–468

    Article  CAS  Google Scholar 

  • Park K, Kwak IS (2014) Characterize and Gene Expression of Heat Shock Protein 90 in Marine Crab Charybdis japonica following Bisphenol A and 4-Nonylphenol Exposures. Environ Health Toxicol 29:e2014002

    Article  Google Scholar 

  • Planelló R, Martinez-Guitarte JL, Morcillo G (2008) The endocrine disruptor bisphenol A increases the expression of HSP70 and ecdysone receptor genes in the aquatic larvae of Chironomus riparius. Chemosphere 71:1870–1876

    Article  CAS  Google Scholar 

  • Puinean AM, Rotchell JM (2006) Vitellogenin gene expression as a biomarker of endocrine disruption in the invertebrate. Mytilus edulis Mar Environ Res 62:S211–S214

    Article  CAS  Google Scholar 

  • Rhee JS, Raisuddin S, Lee KW et al. (2009) Heat shock protein (Hsp) gene responses of the intertidal copepod Tigriopus japonicus to environmental toxicants. Comp Biochem Physiol C 149(1):104–112

    Google Scholar 

  • Rotchell J, Ostrander G (2003) Molecular markers of endocrine disruption in aquatic organisms. J Toxicol Environ Health B 6:453–496

    Article  CAS  Google Scholar 

  • Sharma VK, Anquandah GA, Yngard RA et al. (2009) Nonylphenol, octylphenol, and bisphenol-A in the aquatic environment: a review on occurrence, fate, and treatment. J Environ Sci Health A 44:423–442

    Article  CAS  Google Scholar 

  • Shaw JR, Pfrender ME, Eads BD et al (2008) Daphnia as an emerging model for toxicological genomics. Adv Exp Biol 2:165–328

    Article  CAS  Google Scholar 

  • Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16

    Article  CAS  Google Scholar 

  • Soares A, Guieysse B, Jefferson B, Cartmell E, Lester JN (2008) Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ Int 34:1033–1049

    Article  CAS  Google Scholar 

  • Tokishita S, Kato Y, Kobayashi T, Nakamura S, Ohta T, Yamagata H (2006) Organization and repression by juvenile hormone of a vitellogenin gene cluster in the crustacean, Daphnia magna. Biochem Biophy Res Comm 345:362–370

    Article  CAS  Google Scholar 

  • Watts MM, Pascoe D, Carroll K (2003) Exposure to 17α-ethinylestradiol and bisphenol A—effects on larval moulting and mouthpart structure of Chironomus riparius. Ecotoxicol Environ Saf 54:207–215

    Article  CAS  Google Scholar 

  • Yao TP, Forman BM, Jiang Z et al. (1993) Functional ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature 366:476–479

    Article  CAS  Google Scholar 

  • Yazdani M, Andresen AM, Gjøen T (2016) Short-term effect of bisphenol-a on oxidative stress responses in Atlantic salmon kidney cell line: a transcriptional study. Toxicol Mech Methods 26:295–300

    Article  CAS  Google Scholar 

  • Wu M, Xu H, Shen Y, Qiu W, Yang M (2011) Oxidative stress in zebrafish embryos induced by short‐term exposure to bisphenol A, nonylphenol, and their mixture. Environ Toxicol Chem 30:2335–2341

    Article  CAS  Google Scholar 

  • Yuan HX, Sima YH, Xu SQ (2013) Differential Effects of 4-n-Nonylphenol on Glutathione, Glutathione S-Transferase, and Glutathione Peroxidase on Gonads in Different Developmental Stages in the Bombyx mori (Lepidoptera: Bombycidae). Ann Entomol Soc Am 106:832–839

    Article  CAS  Google Scholar 

  • Zitka O, Skalickova S, Gumulec J et al. (2012) Redox status expressed as GSH: GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol Let 4:1247–1253

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Research Foundation of Korea (NRF-2016R1A2B4009939) funded to Young-Mi Lee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Mi Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, RO., Kim, H. & Lee, YM. Evaluation of 4-nonylphenol and bisphenol A toxicity using multiple molecular biomarkers in the water flea Daphnia magna. Ecotoxicology 28, 167–174 (2019). https://doi.org/10.1007/s10646-018-2009-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-018-2009-2

Keywords

Navigation