Skip to main content
Log in

Sparse PCA and investigation of multi-elements compositional repositories: theory and applications

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

The geochemistry of floodplain sediments is fundamental to monitor environmental changes and to quantify their contribution to natural and anthropic processes. A floodplain sediment composition is a vector of positive elements which sum to a fixed constant. The analysis of high-dimensional compositions requires methods that produce results involving only a small portion of the original variables. On the other hand, the analysis must take into account the additional constraints specific to compositions. With the purpose of studying these problems, a new procedure for sparse PCA is proposed on European floodplain sediment samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aitchison J (1982) The statistical analysis of compositional data. J R Stat Soc Ser B (Methodol) 44(2):139–177

  • Aitchison J (1983) Principal component analysis of compositional data. Biometrika 70:57–65

    Article  Google Scholar 

  • Aitchison J (1986) The statistical analysis of compositional data. Chapman and Hall, London

    Book  Google Scholar 

  • Aitchison J, Greenacre M (2002) Biplots of compositional data. J R Stat Soc Ser C (Appl Stat) 51:375–392

    Article  Google Scholar 

  • Baize D, Sterckeman T (2001) Of the necessity of knowledge of the natural pedo-geochemical background content in the evaluation of the contamination of soils by trace elements. Sci Total Environ 264:127–139

    Article  CAS  PubMed  Google Scholar 

  • Billheimer D, Guttorp P, Fagan W (2001) Statistical interpretation of species composition. J Am Stat Assoc 456:1205–1214

    Article  Google Scholar 

  • Boumal N, Mishra B, Absil P-A, Sepulchre R (2014) Manopt: a Matlab toolbox for optimization on manifolds. J Mach Learn Res 15:1455–1459

    Google Scholar 

  • Buccianti A, Lima A, Albanese S, Cannatelli C, Esposito R, De Vivo B (2015) Exploring topsoil geochemistry from the CoDA (compositional data analysis) perspective: the multi-element data archive of the Campania Region (Southern Italy). J Geochem Explor 159:302–316

    Article  CAS  Google Scholar 

  • De Vos W, Tarvainen T, Salminen R, Reeder S, De Vivo B, Demetriades A, Pirc S, Batista MJ, Marsina K, Ottesen RT, O’Connor PJ, Bidovec M, Lima A, Siewers U, Smith B, Taylor H, Shaw R, Salpeteur I, Gregorauskiene V, Halamic J, Slaninka I, Lax K, Gravese P, Birke M, Breward N, Ander EL, Jordan G, Duris M, Klein P, Locutura J, Bel-Lan A, Pasieczna A, Lis J, Mazreku A, Gilucis A, Heitzmann P, Klaver G, Petersell V (2006) Geochemical Atlas of Europe. Part 2. Interpretation of Geochemical Maps, Additional Tables, Figures, Maps, and Related Publications. Geological Survey of Finland, Espoo. ISBN: 951-690-956-6

  • Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barcelo-Vidal C (2003) Isometric logratio transformations for compositional data analysis. Math Geol 35(3):279–300

    Article  Google Scholar 

  • Egozcue J, Pawlowsky-Glahn V (2005) Groups of parts and their balances in compositional data analysis. Math Geol 37:795–820

    Article  Google Scholar 

  • Egozcue JJ, Barcelo-Vidal C, Martín-Fernández JA, Jarauta-Bragulat E, Díaz-Barrero JL, Mateu-Figueras G (2011) Elements of simplicial linear algebra and geometry, compositional data analysis: theory and applications. Wiley, Chichester

    Google Scholar 

  • Engle MA, Gallo M, Schroeder KT, Geboy NJ, Zupancic JW (2014) Three-way compositional analysis of water quality monitoring data. Environ Ecol Stat 21(3):565–581

    Article  CAS  Google Scholar 

  • Gallo M, Buccianti A (2013) Weighted principal component analysis for compositional data: application example for the water chemistry of the Arno river (Tuscany, central Italy). Environmetrics 24(4):269–277

    Article  CAS  Google Scholar 

  • Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New York

    Google Scholar 

  • Mert MC, Filzmoser P, Hron H (2015) Sparse principal balances. Stat Model 15:159–174

    Article  Google Scholar 

  • Pawlowsky-Glahn V, Egozcue J (2001) Geometric approach to statistical analysis on the simplex. Stoch Environ Res Risk Assess 15:38–398

    Article  Google Scholar 

  • Pawlowsky-Glahn V, Buccianti A (2011) Compositional data analysis: theory and applications. Wiley, London

    Book  Google Scholar 

  • Salminen R, Batista MJ, Bidovec M, Demetriades A, De Vivo B, De Vos W, Gilucis A, Gregorauskiene V, Halamic J, Heitzmann P, Lima A, Jordan G, Klaver G, Klein P, Lis J, Locutura J, Marsina K, Mazreku A, Mrnkova J, O’Connor P. J, Olsson S, Ottesen R-T, Petersell V, Plant JA, Reeder S, Salpeteu I, Sandström H, Siewers U, Steenfelt A, Tarvaine T (2005) FOREGS Geochemical Atlas of Europe. Part 1. Background Information, Methodology, and Maps. Geological Survey of Finland, Espoo. ISBN: 951-690-913-2 http://www.gtk/publ/foregsatlas, March 15, 2005

  • Salpeteur I, Locutura J, Tyráek J (2005) A brief summary of the Tertiary-Quaternary landscape evolution focusing on palaeodrainage settlement on the European Shield. Salminen (Chiefeditor) R, Batista MJ, Bidovec M, Demetriades A, De Vivo B, De Vos W, Duris M, Gilucis A, Gregorauskiene V, Halamic J, Heitzmann P, Lima A, Jordan G, Klaver G, Klein P, Lis J, Locutura J, Marsina K, Mazreku A, O’Connor PJ, Sölsson RT, Ottesen V Petersell, Plant JA, Reeder S, Salpeteur I, Sandström H, Siewers U, Steenfelt A, Tarvainen T FOREGS Geochemical Atlas of Europe, Part 1: Background Information. Methodology and Maps. Geological Survey of Finland, Espoo, pp 51–61

  • Tibshirani R (1996) Regression shrinkage and selection via the LASSO. J R Stat Soc B 58:267–288

    Google Scholar 

  • Trendafilov N, Jolliffe I (2006) Projected gradient approach to the numerical solution of the SCoTLASS. Comput Stat Data Anal 50:242–253

    Article  Google Scholar 

  • Trendafilov NT (2012) DINDSCAL: direct INDSCAL. Stat Comput 22:445–454

    Article  Google Scholar 

  • Trendafilov NT (2014) From simple structure to sparse components: a review. Comput Stat 29:431–454

    Article  Google Scholar 

  • Zou H, Hastie T, Tibshirani R (2006) Sparse principal component analysis. J Comput Graph Stat 15(2):265–286

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Gallo.

Additional information

Handling Editor: Bryan F. J. Manly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallo, M., Trendafilov, N.T. & Buccianti, A. Sparse PCA and investigation of multi-elements compositional repositories: theory and applications. Environ Ecol Stat 23, 421–434 (2016). https://doi.org/10.1007/s10651-016-0346-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10651-016-0346-y

Keywords

Navigation