Skip to main content
Log in

An equation of motion for particles of finite Reynolds number and size

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

In order to simulate the motion of bubbles, drops, and particles, it is often important to consider finite Reynolds number effects on drag, lift, torque, and history force. Herein, an equation of motion is developed for spherical particles with a no-slip surface based on theoretical analysis, experimental data, and surface-resolved simulations. The equation of motion is then extended to account for finite particle size. This extension is critical for particles which will have a size significantly larger than the grid cell size, particularly important for bubbles, and low-density particles. The extension to finite particle size is accomplished through spatial-averaging (both volume-based and surface-based) of the continuous flow properties. This averaging is consistent with the Faxen limit for solid spheres at small Reynolds numbers and added mass and fluid stress forces at inviscid limits. The finite Re p corrections are shown to have good agreements with experiments and resolved-surface simulations. The finite size corrections are generally fourth-order accurate and an order of magnitude more accurate than point-force expressions (which neglect quadratic and higher spatial gradients) for particles with size on the order of the gradient length-scales. However, further work is needed for more quantitative assessment of the truncation terms and the overall model robustness and accuracy in complex flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auton TR (1987) The lift force on a spherical body in a rotational flow. J Fluid Mech 183: 199–218

    Article  CAS  Google Scholar 

  2. Auton TR, Hunt JCR, Prud’Homme M (1988) The force exerted on a body in inviscid unsteady non-uniform rotational flow. J Fluid Mech 197: 241–257

    Article  Google Scholar 

  3. Bagchi P, Balachandar S (2002) Effect of free rotation on motion of a solid sphere. Phys Fluids 14: 2719–2737

    Article  CAS  Google Scholar 

  4. Bagchi P, Balachandar S (2002) Steady planar straining flow past a rigid sphere at moderate Reynolds number. J Fluid Mech 466: 365–407

    Article  CAS  Google Scholar 

  5. Bagchi P, Balachandar S (2003) Effect of turbulence on the drag and lift of a particle.. Phys Fluids 15(11): 3496–3513

    Article  CAS  Google Scholar 

  6. Barkla HM, AuchterLonie LJ (1971) The Magnus or Robins effect on rotating spheres. J Fluid Mech 47: 437–448

    Article  Google Scholar 

  7. Basset AB (1888) On the motion of a sphere in a viscous liquid. Phil Trans R Soc London 179: 43–63

    Article  Google Scholar 

  8. Bataille J, Lance M, Marie JL (1991) Some aspects of the modeling of bubbly flows. In: Hewitt GF, Mayinger F, Riznic JR (eds) Phase-interface phenomena in multiphase flow. Hemisphere Publishing Corporation, New York

    Google Scholar 

  9. Brenner H (1964) The Stokes resistasnce of an arbitrary particle—IV arbitrary fields of flow. Chem Eng Sci 19: 703–727

    Article  CAS  Google Scholar 

  10. Burton TM, Eaton JK (2005) Fully resolved simulations of particle-turbulence interaction. J Fluid Mech 545: 67–111

    Article  Google Scholar 

  11. Dorgan AJ, Loth E (2007) Efficient calculation of the history force at finite Reynolds numbers. Int J Multiph Flow 33: 833–848

    Article  CAS  Google Scholar 

  12. Dorgan AJ, Loth E, Bocksell TL, Yeung PK (2005) Boundary layer dispersion of near-wall injected particles of various inertias. AIAA J 43: 1537–1548

    Article  Google Scholar 

  13. Elghobashi S (1994) On predicting particle-laden turbulent flows. Appl Sci Res 52: 309–329

    Article  Google Scholar 

  14. Faxen H (1922) The resistance against the movement of a rigour sphere in viscous fluids, which is embedded between two parallel layered barriers. Ann Der Physik 68: 89–119

    Article  Google Scholar 

  15. Happel J, Brenner H (1973) Low Reynolds number hydrodynamics. Noordhoff, Dordrecht

    Google Scholar 

  16. Heron I, Davis S, Bretherton F (1975) On the sedimentation of a sphere in a centrifuge. J Fluid Mech 68: 209–234

    Article  Google Scholar 

  17. Hobson EW (1931) The theory of spherical and ellipsoidal harmonics. Cambridge Univ. Press, New York (Republished 1955 by Chelsea Publishing Comp)

  18. Jeffrey RC, Pearson JRA (1965) Particle motion in a laminar vertical tube flow. J Fluid Mech 22: 721–735

    Article  Google Scholar 

  19. Kim I, Elghobashi S, Sirignano WB (1998) On the equation for spherical- particle motion: effect of Reynolds and acceleration numbers. J Fluid Mech 367: 221–253

    Article  CAS  Google Scholar 

  20. Legendre D, Magnaudet J (1998) Lift force on a bubble in a viscous linear shear flow. J Fluid Mech 368: 81–126

    Article  CAS  Google Scholar 

  21. Lin CJ, Perry JH, Scholwater WR (1970) Simple shear flow round a rigid sphere: inertial effects and suspension rheology. J Fluid Mech 44: 1–17

    Article  Google Scholar 

  22. Loth E (2008) Lift of a spherical particle subject to vorticity and/or spin. AIAA J 46: 801–809

    Article  CAS  Google Scholar 

  23. Lovalenti PM, Brady JF (1993) The force on a sphere in a uniform flow with small-amplitude oscillations at finite Reynolds number. J Fluid Mech 256: 607–614

    Article  CAS  Google Scholar 

  24. Maxey MR (1993) Equation of motion for a small rigid sphere in a non-uniform or unsteady flow. ASME/FED Gas-Solid Flows 166: 57–62

    Google Scholar 

  25. Maxey MR, Riley JJ (1983) Equation of motion for a small rigid sphere in a non-uniform flow. Phys Fluids 26: 883–889

    Article  Google Scholar 

  26. McLaughlin JB (1991) Inertial migration of a small sphere in linear shear flows. J Fluid Mech 224: 261–274

    Article  CAS  Google Scholar 

  27. Mei R (1992) An approximate expression for shear lift force on a spherical particle at a finite Reynolds number. Int J Multiph Flow 18: 145–147

    Article  CAS  Google Scholar 

  28. Mei R, Adrian RJ (1992) Flow past a sphere with an oscillation in the free-stream and unsteady drag at finite Reynolds number. J Fluid Mech 237: 323–341

    Article  CAS  Google Scholar 

  29. Mei R, Klausner JF (1992) Unsteady force on a spherical bubble with finite Reynolds number with small fluctuations in the free-stream velocity. Phys Fluids A 4: 63–70

    Article  CAS  Google Scholar 

  30. Mei R, Klausner JF (1994) Shear lift force on spherical bubbles. Int J Heat Fluid Flow 15: 62–65

    Article  CAS  Google Scholar 

  31. Mei R, Lawrence CJ, Adrian RJ (1991) Unsteady drag on a sphere at finite Reynolds number with small fluctuations in the free-stream velocity. J Fluid Mech 233: 613–631

    Article  CAS  Google Scholar 

  32. Merle A, Legendre D, Magnaudet J (2005) Forces on a high-Reynolds-number spherical bubble in a turbulent flow. J Fluid Mech 532: 53–62

    Article  Google Scholar 

  33. Michaelides E (2003) Hydrodynamic force and heat/mass transfer from particles bubbles and drops: The Freeman Scholar Lecture. J Fluids Eng 125: 209–238

    Article  Google Scholar 

  34. Moorman RW (1955) Motion of a spherical particle in the accelerated portion of free-fall. Ph.D thesis, University of Iowa

  35. Odar F, Hamilton WS (1964) Forces on a sphere accelerating in a viscous fluid. J Fluid Mech 18: 302–314

    Article  Google Scholar 

  36. Poe GG, Acrivos A (1975) Closed-streamline flows past rotating single cylinders and spheres: inertia effects. J Fluid Mech 72: 605–623

    Article  Google Scholar 

  37. Rubinov SI, Keller JB (1961) The transverse force on spinning spheres moving in a viscous liquid. J Fluid Mech 11: 3447–459

    Google Scholar 

  38. Saffman PG (1965) The lift on a sphere in slow shear flow. J Fluid Mech 22:385–400. (Corrigendum, 1968. 31, 624)

    Google Scholar 

  39. Schiller L, Naumann AZ (1933) Über die grundlegenden Berechungen bei der Schwerkraftaufbereitung. Ver Deut Ing 77: 318–320

    Google Scholar 

  40. Stokes GG (1851) On the effect of the inertial friction of fluids on the motion of pendulums. Trans Cambr Phil Soc 9: 8–106

    Google Scholar 

  41. Tanaka T, Yonemura S, Tsuji Y (1990) Experiments of fluid forces on a rotating sphere and spheroid. In Proceedings of the 2nd KSME-JSME Fluids Engineering Conference, Seoul, Korea

  42. Tri BD, Oesterle B, Deneu F (1990) Premiers resultants sur la portance d’une sphere en rotation aux nombres de Reynolds intermediaies. CR Acad Sci Ser II Mech Phys Chim Sci Terre Universe 311: 27

    Google Scholar 

  43. Tsuji Y, Morikawa Y, Mizuno O (1985) Experimental measurements of the magnus force on a rotating sphere at low Reynolds numbers. J Fluids Eng 107: 484–488

    Article  Google Scholar 

  44. Wakaba LV, Balachandar S (2007) History force on a sphere in a weak linear shear flow. Int J Heat Fluid Flow 31: 996–1014

    Google Scholar 

  45. Zeng L, Balachandar S, Najjar F (2008) Interactions of a stationary finite-sized particle with wall turbulence. J Fluid Mech 594: 271–305

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Loth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loth, E., Dorgan, A.J. An equation of motion for particles of finite Reynolds number and size. Environ Fluid Mech 9, 187–206 (2009). https://doi.org/10.1007/s10652-009-9123-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-009-9123-x

Keywords

Navigation