Skip to main content
Log in

Simulation of groundwater age evolution during the Wisconsinian glaciation over the Canadian landscape

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

The simulation of groundwater age (residence time) is used to study the impact of the Wisconsinian glaciation on the Canadian continental groundwater flow system. Key processes related to coupled groundwater flow and glaciation modeling are included in the model such as density-dependent flow, hydromechanical loading, subglacial infiltration, glacial isostasy, and permafrost development. It is found that mean groundwater ages span over a large range in values, between zero and 42 Myr; exceedingly old groundwater is found at large depths where there is little groundwater flow because of low permeabilities and because of the presence of very dense brines. During the glacial cycle, old, deep groundwater below the ice sheet mixes with the young subglacial meltwater that infiltrates into the subsurface; the water displacement due to subglacial recharge reaches depths up to 3 km. The depth of penetration of the meltwater is, however, strongly dependent on the permeability of the subsurface rocks, the presence of dense brines and the presence or absence on deep fractures or conductive faults. At the end of the simulation period, it was found that the mean groundwater age in regions affected by the ice sheet advance and retreat is younger than it was at the last interglacial period. This is also true for frozen groundwater in the permafrost area and suggests that significant parts of this water is of glacial origin. Finally, the simulation of groundwater age offers an alternative and pragmatic framework to understand groundwater flow during the Pleistocene and for paleo-hydrogeological studies because it records the history of the groundwater flow paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akouvi A, Dray M, Violette S, de Marsily G and Zupp GM (2008). The sedimentary coastal basin of Togo: example of a multilayered aquifer still influenced by a palaeo-seawater intrusion. Hydrogeol J 16(3): 419–436 doi:10.1007/s10040-007-0246-1

    Article  CAS  Google Scholar 

  2. Andrews JN and Lee DJ (1979). Inert gases in groundwater from the Bunter sandstone of England as indicators of age and palaeoclimatic trends. J Hydrol 41: 233–252

    Article  CAS  Google Scholar 

  3. Bahr JM, Moline GR, Nadon G (1994) Anomalous pressures in the deep Michigan Basin. In: Ortoleva P (ed) Basin compartments and seals, AAPG Memoir 61, AAPG, pp 153–165

  4. Bekele EB, Rostron BJ and Person MA (2003). Fluid pressure implications of erosion unloading, basin hydrodynamics and glaciation in the Alberta Basin. J Geochem Explor 78(79): 143–147

    Article  Google Scholar 

  5. Bense VF and Person MA (2008). Transient hydrodynamics within inter-cratonic sedimentary basins during glacial cycles. J Geophys Res 113: F04005 doi:10.1029/2007JF000969

    Article  Google Scholar 

  6. Boulton GS, Slot T, Blessing K, Glasbergen P, Leijnse T and van Gijssel K (1993). Deep circulation of groundwater in overpressured subglacial aquifers and it’s geological consequences. Quat Sci Rev 12: 739–745

    Article  Google Scholar 

  7. Boulton GS, Caban PB and van Gijssel K (1995). Groundwater flow beneath ice sheets: Part I - Large scale patterns. Quat Sci Rev 14: 545–562

    Article  Google Scholar 

  8. Boulton GS, Caban PB, Leijnse A, Punkari M, van Gissel K and van Weert FHA (1996). The impact of glaciation on the groundwater regime of Northwest Europe. Global Planet Change 12(1–4): 397–413

    Article  Google Scholar 

  9. Breemer CH, Clark PU and Haggerty R (2002). Modeling the subglacial hydrology of the late Pleistocene Lake Michigan Lobe, Laurentide Ice Sheet. Geol Soc Am Bull 114(6): 665–674

    Article  Google Scholar 

  10. Chan T, Christiansson R, Boulton GS, Ericsson LO, Hartikainen J, Jensen MR, Ivars DM, Stanchell FW, Vistrand P and Wallroth T (2005). DECOVALEX III BMT3/BENCHPAR WP4, the thermo-hydro-mechanical responses to a glacial cycle and their potential implications for deep geological disposal of nuclear fuel waste in a fractured crystalline rock mass. Int J Rock Mech Min 42(5-6): 805–827

    Article  Google Scholar 

  11. Clark ID, Douglas M, Raven K and Bottomley D (2000). Recharge and preservation of Laurentide glacial melt water in the Canadian Shield. Ground Water 38(5): 735–742

    Article  CAS  Google Scholar 

  12. Cornaton F (2004) Deterministic models of groundwater age, life expectancy and transit time distributions in advective–dispersive systems. PhD thesis, University of Neuchâtel, Switzerland

  13. Cornaton F and Perrochet P (2006). Groundwater age, life expectancy and transit time distributions in advectivef́bdispersive systems: 1. Generalized reservoir theory. Adv Water Resour 29(9): 1267–1291

    Article  Google Scholar 

  14. Delhez EJM, Campin JM, Hirst AC and Deleersnijder E (1999). Toward a general theory of the age in ocean modelling. Ocean Modelling 1: 17–27

    Article  Google Scholar 

  15. Douglas M, Clark ID, Raven K and Bottomley D (2000). Groundwater mixing dynamics at a Canadian Shield mine. J Hydrol 235(1–2): 88–103

    Article  CAS  Google Scholar 

  16. Edmunds WM (2001) Paleowaters in European coastal aquifers—the goals and main conclusions of the PALAEAUX project. In: Edmunds WM, Milne CJ (eds) Paleowaters in coastal Europe: evolution of groundwater since the late Pleistocene, Geological Society, London, pp 1–16, Special Publications, 189

  17. Ferguson GAG, Betcher RN and Grasby SE (2007). Hydrogeology of the Winnipeg formation in Manitoba, Canada. Hydrogeol J 15: 573–587 doi:10.1007/s10040-006-0130-4

    Article  CAS  Google Scholar 

  18. Frape SK, Fritz P (1987) Geochemical trends for groundwaters from the Canadian Shield. In: Fritz P, Frape SK (eds) Saline water and gases in crystalline rocks, Geological Association of Canada Special paper 33, pp 19–38

  19. Gascoyne M and Sheppard MI (1993). Evidence of terrestrial discharge of deep groundwater on the Canadian Shield from Helium in soil gases. Environ Sci Technol 27(12): 2420–2426

    Article  CAS  Google Scholar 

  20. Goode DJ (1996). Direct simulation of groundwater age. Water Resour Res 32(2): 289–296

    Article  CAS  Google Scholar 

  21. Grasby SE and Chen Z (2005). Subglacial recharge into the western Canada sedimentary basin—impact of Pleistocene glaciation on basin hydrodynamics. Geol Soc Am Bull 117(3/4): 500–514

    Article  Google Scholar 

  22. Grasby S, Osadetz K, Betcher R and Render F (2000). Reversal of the regional-scale flow system of the Williston basin in response to Pleistocene glaciation. Geology 28(7): 635–638

    Article  CAS  Google Scholar 

  23. Kolak JJ, Long DT, Larson GJ and Hoaglund JR (2004). Analysis of modern and Pleistocene hydrologic exchange between Saginaw Bay (Lake Huron) and the Saginaw Lowlands area. Geol Soc Am Bull 116(1–2): 3–15

    Article  CAS  Google Scholar 

  24. Kazemi GA, Lehr JH and Perrochet P (2006). Groundwater age. Wiley, Hoboken

    Book  Google Scholar 

  25. Klump S, Grundl T, Purtschert R and Kipfer R (2008). Groundwater and climate dynamics derived from noble gas, 14C, and stable isotope data. Geology 36(5): 395–398

    Article  CAS  Google Scholar 

  26. Laske G and Masters G (1997). A global digital map of sediment thickness. EOS Trans AGU 78: F483

    Google Scholar 

  27. Lemieux JM (2006) Impact of the Wisconsinian glaciation on Canadian continental groundwater flow. PhD thesis, University of Waterloo, Waterloo, ON, Canada, available online at http://hdl.handle.net/10012/2654

  28. Lemieux JM, Sudicky EA, Peltier WR and Tarasov L (2008). Dynamics of groundwater recharge and seepage over the Canadian landscape during the Wisconsinian glaciation. J Geophys Res 113: F01011 doi:10.1029/2007JF000838

    Article  Google Scholar 

  29. Lemieux JM, Sudicky EA, Peltier WR and Tarasov L (2008). Simulating the impact of glaciations on continental groundwater flow systems: 1. Relevant processes and model formulation. J Geophys Res 113: F03017 doi:10.1029/2007JF000928

    Google Scholar 

  30. Lemieux JM, Sudicky EA, Peltier WR and Tarasov L (2008). Simulating the impact of glaciations on continental groundwater flow systems: 2. Model application to the Wisconsinian glaciation over the Canadian landscape. J Geophys Res 113: F03018 doi:10.1029/2007JF000929

    Google Scholar 

  31. McIntosh JC and Walter LM (2005). Volumetrically significant recharge of Pleistocene glacial meltwaters into epicratonic basins: constraints imposed by solute mass balances. Chem Geol 222(3-4): 292–309

    Article  CAS  Google Scholar 

  32. McIntosh JC and Walter LM (2006). Paleowaters in silurian-devonian carbonate aquifers: geochemical evolution of groundwater in the great lakes region since the late pleistocene. Geochim Cosmochim Acta 70: 2454–2479

    Article  CAS  Google Scholar 

  33. McIntosh JC, Walter LM and Martini AM (2002). Pleistocene recharge to midcontinent basins: Effects on salinity structure and microbial gas generation. Geochim Cosmochim Acta 66(10): 1681–1700

    Article  CAS  Google Scholar 

  34. McIntosh JC, Garven G, Hanor JS (2005) Modeling variable-density fluid flow and solute transport in glaciated sedimentary basins. Eos Trans AGU 86(52), fall Meet. Suppl., Abstract H11D-1310

  35. Moeller CA, Mickelson DM, Anderson MP and Winguth C (2007). Groundwater flow beneath Late Weichselian glacier ice in Nordfjord, Norway. J Glaciol 53(180): 84–90

    Article  CAS  Google Scholar 

  36. Person M, Dugan B, Swenson JB, Urbano L, Stott C, Taylor J and Willett M (2003). Pleistocene hydrogeology of the Atlantic continental shelf, New England. Geol Soc Am Bull 115(11): 1324–1343

    Article  Google Scholar 

  37. Person M, McIntosh J, Bense V and Remenda VH (2007). Pleistocene hydrology of North America: the role of ice sheets in reorganizing groundwater flow systems. Rev Geophys 45: RG3007 doi:10.1029/2006RG000206

    Article  Google Scholar 

  38. Piotrowski JA (1997). Subglacial groundwater flow during the last glaciation in northwestern Germany. Sediment Geol 111: 217–224

    Article  Google Scholar 

  39. Piotrowski JA (1997). Subglacial hydrology in north-western Germany during the last glaciation: groundwater flow, tunnel, valleys and hydrological cycles. Quat Sci Rev 16: 169–185

    Article  Google Scholar 

  40. Provost AM, Voss CI, Neuzil CE (1998) Glaciation and regional ground-water flow in the Fennoscandian shield; Site 94. SKI Report 96:11, Swedish Nuclear Power Inspectorate, Stockholm, Sweden

  41. Raven KG, Bottomley DJ, Sweezey RA, Smedley JA, Ruttan TJ (1987) Hydrogeological characterization of the East Bull Lake research area. Tech. rep., National Hydrology Research Institute Paper No. 31, Inland Waters Directorate Series No. 160, Environment Canada, Ottawa, Canada

  42. Sheppard MI, Thibault DH, Milton GM, Reid JAK, Smith PA and Steve K (1995). Characterization of a suspected terrestrial deep groundwater discharge area on the Canadian Precambrian shield. J Contam Hydrol 18(1): 59–84

    Article  CAS  Google Scholar 

  43. Siegel DI (1989) Geochemistry of the Cambrian-Ordovician aquifer system in the Northern Midwest, United States. U.S. Geological Survey Professional Paper 1405-D, USGS, Denver, Colorado

  44. Siegel DI (1991). Evidence for dilution of deep, confined ground water by vertical recharge of isotopically heavy Pleistocene water. Geology 19(5): 433–436

    Article  CAS  Google Scholar 

  45. Siegel DI and Mandle RJ (1983). Isotopic evidence for glacial meltwater recharge to the Cambrian-Ordovician aquifer, North-Central United States. Quart Res 22(3): 328–335

    Article  Google Scholar 

  46. Stotler RL (2008) Evolution of Canadian Shield groundwaters and gases: influence of deep permafrost. PhD thesis, University of Waterloo, Waterloo, ON, Canada. Available online at http://hdl.handle.net/10012/4020

  47. Stotler RL, Frape SK, Ruskeeniemi T, Ahonen L, Onstott TC and Hobbs MY (2009). Hydrogeochemistry of groundwaters in and below the base of thick permafrost at Lupin, Nunavut, Canada. J Hydrol 373(1–2): 80–95 doi:10.1016/j.jhydrol.2009.04.013

    Article  CAS  Google Scholar 

  48. Tarasov L and Peltier WR (1999). Impact of thermomechanical ice sheet coupling on a model of the 100 kyr ice age cycle. J Geophys Res 104(D8): 9517–9545

    Article  Google Scholar 

  49. Tarasov L and Peltier WR (2002). Greenland glacial history and local geodynamic consequences. Geophys J Int 150: 198–229

    Article  Google Scholar 

  50. Tarasov L and Peltier WR (2004). A geophysically constrained large ensemble analysis of the deglacial history of the North American ice-sheet complex. Quat Sci Rev 23(3–4): 359–388

    Article  Google Scholar 

  51. Tarasov L and Peltier WR (2006). A calibrated deglacial drainage chronology for the North American continent: Evidence of an Arctic trigger for the Younger Dryas. Quat Sci Rev 25(7–8): 659–688

    Article  Google Scholar 

  52. Therrien R, McLaren R, Sudicky EA, Panday S (2006) HydroGeoSphere, a three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport. Groundwater Simulations Group, Waterloo, Ontario, Canada

  53. Vaikmäe R, Vallner L, Loosli HH, Blaser PC, Julliard-Tardent M (2001) Paleogroundwater of glacial origin in the Cambrian-Vendian aquifer of northern Estonia. In: Edmunds WM, Milne CJ (eds) Paleowaters in coastal Europe: evolution of groundwater since the late Pleistocene. Geological Society, London, pp 17–27, Special Publications, 189

  54. Leijnse A, Boulton GS, van Weert FHA and van Gijssel K (1997). The effects of Pleistocene glaciations on the geohydrological system of Northwest Europe. J Hydrol 195(1–4): 137–159

    Google Scholar 

  55. Vidstrand P, Wallroth T and Ericsson LO (2008). Coupled HM effects in a crystalline rock mass due to glaciation: indicative results from groundwater flow regimes and stresses from an FEM study. Bull Eng Geol Environ 67(2): 187–197 doi:10.1007/s10064-008-0123-8

    Article  CAS  Google Scholar 

  56. Voss CI, Provost AM (2001) Recharge-area nuclear waste repository in southeastern Sweden—demonstration of hydrogeologic siting concepts and techniques. SKI Report 01:44, Swedish Nuclear Power Inspectorate, Stockholm, Sweden

  57. Weaver TR, Frape SK and Cherry JA (1995). Recent cross-formational fluid flow and mixing in the shallow Michigan Basin. Geol Soc Am Bull 107(6): 697–707

    Article  CAS  Google Scholar 

  58. Wheeler JO, Hoffman PF, Cardand KD, Davidson A, Sanford BV, Okulitch AV, Roest WR (1997) Geological map of Canada, Map D1860A. Geological Survey of Canada, Ottawa, Canada

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Lemieux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemieux, JM., Sudicky, E.A. Simulation of groundwater age evolution during the Wisconsinian glaciation over the Canadian landscape. Environ Fluid Mech 10, 91–102 (2010). https://doi.org/10.1007/s10652-009-9142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-009-9142-7

Keywords

Navigation