Skip to main content
Log in

Estimating travel time of recharge water through a deep vadose zone using a transfer function model

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

We estimate the travel time of percolating water through a deep vadose zone at the regional scale using a transfer function model and a physical based conceptual flow model (Hydrus-1D), thereby exploiting the time series of precipitation, actual evapotranspiration and groundwater piezometry and generic vadose zone data. With the transfer function model we observe a high variability of estimated travel time varying from 0.9 to 3.1 years, corresponding to estimated vertical water flux velocities varying from 6.6 to 28.0 m/year. These results were compared with the travel time estimated from the physical based conceptual model. With the flow model, estimated travel time varies between 4.7 and 15.5 years, corresponding to water flux velocities varying between 1.7 and 4.1 m/year. The estimated travel time calculated with the flow model were therefore about five times larger than those estimated with the transfer function model. This could be explained by the fact that the transfer function model considers heterogeneous recharge from the vadose zone as well as from the vicinity of the piezometer through the so called “pushing effect”. In addition, the flow model requires various hydrogeological and hydrodynamic parameters which were estimated using generic parametrisation approaches, that are largely affected by uncertainty and may not reflect the local conditions. In contrast, the transfer function model only exploits available measurable time series and has the advantage of being site-specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allison G, Stone W, Hughes M (1985) Recharge in karst and dune elements of a semi-arid landscape as indicated by natural isotopes and chloride. J Hydrol 76(1–2): 1–25

    Article  CAS  Google Scholar 

  2. Alvarez-Benedi J, Munoz-Carpena R (eds) (2005) Soil-water-solute processes in environmental systems. Monitoring, characterization and modelling. CRC Press, Boca Raton

    Google Scholar 

  3. Barnes C, Allison G (1988) Tracing of water movement in the unsaturated zone using stable isotopes of hydrogen and oxygen. J Hydrol 100(1–3): 143–176

    Article  CAS  Google Scholar 

  4. Bear J (1972) Dynamics of fluids in porous media. Dover, New York

    Google Scholar 

  5. Birdsell KH, Newman BD, Broxton DE, Robinson BA (2005) Conceptual models of vadose zone flow and transport beneath the Pajarito Plateau, Los Alamos, New Mexico. Vadose Zone J 4(3): 620–636

    Article  CAS  Google Scholar 

  6. Carsel RF, Parrish RS (1988) Developing joint probability-distributions of soil-water retention characteristics. Water Resour Res 24(5): 755–769

    Article  Google Scholar 

  7. Constantz J, Tylerb SW, Kwicklisc E (2003) Temperature-profile methods for estimating percolation rates in arid environments. Vadose Zone J 2: 12–24

    Article  Google Scholar 

  8. Cook PG, Jolly ID, Leaney FW, Walker GR, Allan GL, Fifield LK, Allison GB (1994) Unsaturated zone tritium and Cl-36 profiles from Southern Australia—their use as tracers of soil-water movement. Water Resour Res 30(6): 1709–1719

    Article  Google Scholar 

  9. Dettinger MD (1989) Reconnaissance estimates of natural recharge to desert basins in Nevada, U.S.A., by using chloride-balance calculations. J Hydrol 106(1–2): 55–78

    Article  CAS  Google Scholar 

  10. Dyck MF, Kachanoski RG, de Jong E (2005) Spatial variability of long-term chloride transport under semiarid conditions: Pedon scale. Vadose Zone J 4(4): 915–923

    Article  CAS  Google Scholar 

  11. Faust AE, Ferre TPA, Schaap MG, Hinnell AC (2006) Can basin-scale recharge be estimated reasonably with water-balance models?. Vadose Zone J 5(3): 850–855

    Article  Google Scholar 

  12. Feddes R, de Rooij G, van Dam J (eds) (2004) Unsaturated zone modelling: progress, challenges and applications. Kluwer, Dordrecht

    Google Scholar 

  13. Flint AL, Ellett KM (2004) The role of the unsaturated zone in artificial recharge at San Gorgonio Pass, California. Vadose Zone J 3(3): 763–774

    CAS  Google Scholar 

  14. Gasser M, Caron J, Lagace R, Laverdiere M (2003) Predicting nitrate leaching under potato crops using transfer functions. J Environ Qual 32(4): 1464–1473

    Article  CAS  Google Scholar 

  15. Gee GW, Hillel D (1988) Groundwater recharge in arid regions—review and critique of estimation methods. Hydrol Process 2(3): 255–266

    Article  Google Scholar 

  16. Holt RM, Nicholl MJ (2004) Uncertainty in vadose zone flow and transport prediction. Vadose Zone J 3(2): 480–484

    Article  Google Scholar 

  17. Hubbell JM, Nicholl MJ, Sisson JB, McElroy DL (2004) Application of a Darcian approach to estimate liquid flux in a deep vadose zone. Vadose Zone J 3(2): 560–569

    Article  Google Scholar 

  18. Hupet F, van Dam JC, Vanclooster M (2004) Impact of within-field variability in soil hydraulic properties on transpiration fluxes and crop yields: a numerical study. Vadose Zone J 3(4): 1367–1379

    Article  Google Scholar 

  19. IBW (1987) Étude des ressources en eau du Brabant Wallon, contrat Région Wallonne. Technical report, Intercommunale du Brabant Wallon

  20. Javaux M, Vanclooster M (2003) Robust estimation of the generalized solute transfer function parameters. Soil Sci Soc Am J 67(1): 81–91

    Article  CAS  Google Scholar 

  21. Javaux M, Vanclooster M (2003) Scale- and rate-dependent solute transport within an unsaturated sandy monolith. Soil Sci Soc Am J 67(5): 1334–1343

    CAS  Google Scholar 

  22. Javaux M, Vanclooster M (2004) In situ long-term chloride transport through a layered, nonsaturated subsoil. 2. Effect of layering on solute transport processes. Vadose Zone J 3(4): 1331–1339

    Article  CAS  Google Scholar 

  23. Javaux M, Vanclooster M (2006) Scale-dependency of the hydraulic properties of a variably saturated heterogeneous sandy subsoil. J Hydrol 327(3–4): 376–388

    Article  Google Scholar 

  24. Javaux M, Vanderborght J, Kasteel R, Vanclooster M (2006) Three-dimensional modeling of the scale-and flow rate-dependency of dispersion in a heterogeneous unsaturated sandy monolith. Vadose Zone J 5(2): 515–528

    Article  Google Scholar 

  25. Jury WA (1982) Simulation of solute transport using a transfer-function model. Water Resour Res 18(2): 363–368

    Article  CAS  Google Scholar 

  26. Jury WA, Flühler H (1992) Transport of chemicals through soil: mechanisms, models, and field applications, vol. 47. Academic Press, New York, pp 141–201

    Google Scholar 

  27. Kim SJ, Hyun Y, Lee KK (2005) Time series modeling for evaluation of groundwater discharge rates into an urban subway system. Geosci J 9(1): 15–22

    Article  Google Scholar 

  28. Leterme B, Vanclooster M, Rounsevell MD, Bogaert P (2006) Discriminating between point and non-point sources of atrazine contamination of a sandy aquifer. Sci Total Environ 362(1–3): 124–142

    CAS  Google Scholar 

  29. Levitt DG, Newell DL, Stone WJ, Wykoff DS (2005) Surface water-groundwater connection at the Los Alamos Canyon weir site: Part 1. Monitoring site installation and tracer tests. Vadose Zone J 4(3): 708–717

    Article  Google Scholar 

  30. Mallants D, Jacques D, Vanclooster M, Diels J, Feyen J (1996) A stochastic approach to simulate water flow in a macroporous soil. Geoderma 70(2–4): 299–324

    Article  Google Scholar 

  31. Mattern S, Bogaert P, Vanclooster M (2008) Advances in subsurface pollution of porous media—indicators, processes and modelling: IAH selected papers, vol 14. Taylor and Francis. Introducing time variability and sampling rate in the mapping of groundwater contamination by means of the Bayesian Maximum Entropy (BME) method. IAH—Selected Papers on Hydrogeology, ISBN:9780415476904

  32. McElroy DL, Hubbell JM (2004) Evaluation of the conceptual flow model for a deep vadose zone system using advanced tensiometers. Vadose Zone J 3(1): 170–182

    Article  Google Scholar 

  33. MRW-DGRNE Ddes (2008) Banque de données “10-sous”. Technical report, 15, Avenue Prince de Liège, B-5100 Jambes

  34. Nativ R, Adar E, Dahan O, Geyh M (1995) Water recharge and solute transport through the vadose zone of fractured chalk under desert conditions. Water Resour Res 31(2): 253–261

    Article  CAS  Google Scholar 

  35. O’Geen AT, McDaniel PA, Boll J (2002) Chloride distributions as indicators of vadose zone stratigraphy in Palouse loess deposits. Vadose Zone J 1: 150–157

    Article  Google Scholar 

  36. Oger R (1991) Rétrospective climatologique de la période 1950–1989, poste d’Ernage-Gembloux, 106 pp. Technical report, Centre de Recherches Agronomiques de Gembloux

  37. Onsoy YS, Harter T, Ginn TR, Horwath WR (2005) Spatial variability and transport of nitrate in a deep alluvial vadose zone. Vadose Zone J 4(1): 41–54

    Article  CAS  Google Scholar 

  38. Ott WR (1990) A physical explanation of the lognormality of pollutant concentrations. J Air Waste Manag Assoc 40(10): 1378–1383

    CAS  Google Scholar 

  39. Robinson BA, Cole G, Carey JW, Witkowski M, Gable CW, Lu ZM, Gray R (2005) A vadose zone flow and transport model for Los Alamos Canyon, Los Alamos, New Mexico. Vadose Zone J 4(3): 729–743

    Article  Google Scholar 

  40. Schaap M, Leij F, Genuchten MV (2001) Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251(3–4): 163–176

    Article  Google Scholar 

  41. Si BC, de Jong E (2007) Determining long-term (decadal) deep drainage rate using multiple tracers. J Environ Qual 36(6): 1686–1694

    Article  CAS  Google Scholar 

  42. Simunek J, van Genuchten MT, Sejna M (2008) Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone J 7(2): 587–600

    Article  CAS  Google Scholar 

  43. Stewart IT, Loague K (1999) A type transfer function approach for regional-scale pesticide leaching assessments. J Environ Qual 28(2): 378–387

    Article  CAS  Google Scholar 

  44. Tank AMGK, Wijngaard JB, Konnen GP, Bohm R, Demaree G, Gocheva A, Mileta M, Pashiardis S, Hejkrlik L, Kern-Hansen C, Heino R, Bessemoulin P, Muller-Westermeier G, Tzanakou M, Szalai S, Palsdottir T, Fitzgerald D, Rubin S, Capaldo M, Maugeri M, Leitass A, Bukantis A, Aberfeld R, Van Engelen AFV, Forland E, Mietus M, Coelho F, Mares C, Razuvaev V, Nieplova E, Cegnar T, Lopez JA, Dahlstrom B, Moberg A, Kirchhofer W, Ceylan A, Pachaliuk O, Alexander LV, Petrovic P (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Climatol 22(12): 1441–1453

    Article  Google Scholar 

  45. Vanclooster M, Mallants D, Diels J, Feyen J (1993) Determining local-scale solute transport parameters using time domain reflectometry (tdr). J Hydrol 148(1–4): 93–107

    Article  CAS  Google Scholar 

  46. Vanderborght J, Vanclooster M, Mallants D, Diels J, Feyen J (1996) Determining convective lognormal solute transport parameters from resident concentration data. Soil Sci Soc Am J 60(5): 1306–1317

    CAS  Google Scholar 

  47. van der Velde M, Javaux M, Vanclooster M, Clothier BE (2006) El Nino-Southern Oscillation determines the salinity of the freshwater lens under a coral atoll in the Pacific Ocean. Geophys Res Lett 33(21): L21403

    Article  Google Scholar 

  48. Van Genuchten M (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44: 892–898

    Article  Google Scholar 

  49. Wang W, Neuman SP, Yao Tm, Wierengac PJ (2003) Simulation of large-scale field infiltration experiments using a hierarchy of models based on public, generic, and site data. Vadose Zone J 2: 297–312

    Article  Google Scholar 

  50. Wu YS, Lu GP, Zhang K, Bodvarsson GS (2004) A mountain-scale model for characterizing unsaturated flow and transport in fractured tuffs of Yucca Mountain. Vadose Zone J 3(3): 796–805

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Mattern.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattern, S., Vanclooster, M. Estimating travel time of recharge water through a deep vadose zone using a transfer function model. Environ Fluid Mech 10, 121–135 (2010). https://doi.org/10.1007/s10652-009-9148-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-009-9148-1

Keywords

Navigation