Skip to main content
Log in

Influence of jet aeration on pressures around a block embedded in a plunge pool bottom

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

The influence of the air entrained by water jets on the dynamic pressures applied on the bottom of a plunge pool and inside underlying fissures was analyzed with systematic experiments. The large experimental facility reproduced aerated high-velocity jets up to 22.1 m/s impinging on a pool and impacting on an instrumented cubic block embedded on the bottom. Plunging and submerged jets are compared, as well as jet impingement on the center or on the side of the block. A relationship is proposed to describe the time-averaged pressures at stagnation as a function of the relative pool depth, considering pressure measurements in this position as well as recent experimental evidence on the jet centerline velocity decay. Air bubbles influence the dynamic pressures on the rock bottom by reducing jet momentum, but also by reducing the jet dissipation rates in the water pool. These two processes are opposed. The reduction of momentum, consequence of a jet with a lower apparent density, results in lower pressures, while lower jet dissipation in the pool results in higher kinetic energy of the jet impacting the bottom and higher pressures. Finally, the spectral contents show that the resonance frequencies of aerated jets are shifted as a consequence of wave celerity reduction caused by lower mean densities inside the fissures, which is an evidence of the presence of air bubbles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bellin A, Fiorotto V (1995) Direct dynamic force measurement on slabs in spillway stilling basins. J Hydraul Eng (ASCE) 121(10):686–693. doi:10.1061/(ASCE)0733-9429(1995)121:10(686)

  2. Beltaos S, Rajaratnam N (1974) Impinging circular turbulent jets. J Hydraul Eng Div (ASCE) 100(NHY10):1313–1328

    Google Scholar 

  3. Beltaos S, Rajaratnam N (1977) Impingement of axisymmetric developing jets. J Hydraul Res 15(4):311–326. doi:10.1080/00221687709499637

    Article  Google Scholar 

  4. Bin AK (1993) Gas entrainment by plunging liquid jets. Chem Eng Sci 48(21):3585–3630. doi:10.1016/0009-2509(93)81019-r

    Article  Google Scholar 

  5. Blevins RD (1984) Applied fluid dynamics handbook. Van Nostrand Reinhold Company, Inc., New York

    Google Scholar 

  6. Bollaert E (2002) Transient water pressures in joints and formation of rock scour due to high-velocity jet impact. In: Schleiss AJ (ed) Communication 13. Laboratory of Hydraulic Constructions (LCH), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne

    Google Scholar 

  7. Bollaert E, Schleiss A (2003a) Scour of rock due to the impact of plunging high velocity jets. Part I: a state-of-the-art review. J Hydraul Res 41(5):451–464. doi:10.1080/00221680309499991

    Article  Google Scholar 

  8. Bollaert E, Schleiss A (2003b) Scour of rock due to the impact of plunging high velocity jets. Part II: experimental results of dynamic pressures at pool bottoms and in one- and two-dimensional closed end rock joints. J Hydraul Res 41(5):465–480. doi:10.1080/00221680309499992

    Article  Google Scholar 

  9. Bollaert E, Schleiss A (2005) Physically based model for evaluation of rock scour due to high-velocity jet impact. J Hydraul Eng (ASCE) 131(no 3):153–165. doi:10.1061/(ASCE)0733-9429(2005)131:3(153)

    Article  Google Scholar 

  10. Chanson H (1997) Air bubble entrainment in free-surface turbulent shear flows. Academic Press, London

    Google Scholar 

  11. Chanson H (2009) Turbulent air–water flows in hydraulic structures: dynamic similarity and scale effects. Environ Fluid Mech 9(2):125–142

    Article  Google Scholar 

  12. Chanson H, Aoki S, Hoque A (2004) Physical modelling and similitude of air bubble entrainment at vertical circular plunging jets. Chem Eng Sci 59(4):747–758. doi:10.1016/j.ces.2003.11.016

    Article  Google Scholar 

  13. Duarte R (2013) Air concentrations in plunge pools due to aerated plunging high-velocity jets and dynamic pressures in underlying fissures. In: Proceedings of 35th IAHR world congress, Chengdu, China, 8–13 September

  14. Duarte R, Schleiss A, Pinheiro A (2013) Dynamic pressure distribution around a fixed confined block impacted by plunging and aerated water jets. In: Proceedings of 35th IAHR world congress, Chengdu, China, 8–13 September

  15. Duarte R, Schleiss AJ, Pinheiro A (2014) Discussion on CFD analysis of the effect of nozzle stand-off distance on turbulent impinging jets. Can J Civ Eng 1–2. doi:10.1139/cjce-2013-0540

  16. Ervine DA (1998) Air entrainment in hydraulic structures: a review. Proc Inst Civ Eng Water Manag 130(3):12. doi:10.1680/iwtme.1998.30973

    Google Scholar 

  17. Ervine DA, Falvey HT (1987) Behavior of turbulent jets in the atmosphere and in plunge pools. Proc Inst Civ Eng 2 83:295–314

    Article  Google Scholar 

  18. Ervine DA, Falvey HT, Withers W (1997) Pressure fluctuations on plunge pool floors. J Hydraul Res 35(2):257–279

    Article  Google Scholar 

  19. Federspiel MPEA (2011) Response of an embedded block impacted by high-velocity jets. In: Schleiss AJ (ed) Communication 47. Laboratory of Hydraulic Constructions (LCH), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne. doi:10.5075/epfl-thesis-5160

    Google Scholar 

  20. Fiorotto V, Rinaldo A (1992) Turbulent pressure fluctuations under hydraulic jumps. J Hydraul Res 30(4):499–520. doi:10.1080/00221689209498897

    Article  Google Scholar 

  21. Hachem FE, Schleiss AJ (2011) A review of wave celerity in frictionless and axisymmetrical steel-lined pressure tunnels. J Fluid Struct 27(2):311–328. doi:10.1016/j.jfluidstructs.2010.11.009

    Article  Google Scholar 

  22. Heller V (2011) Scale effects in physical hydraulic engineering models. J Hydraul Res 49(3):293–306. doi:10.1080/00221686.2011.578914

    Article  Google Scholar 

  23. Kolmogoroff A (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C R Acad Sci URSS 30:301–305

    Google Scholar 

  24. Manso PFA (2006) The influence of pool geometry and induced flow patterns in rock scour by high-velocity plunging jets. In: Schleiss AJ (ed) Communication 25. Laboratory of Hydraulic Constructions (LCH), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne

    Google Scholar 

  25. Manso PFA, Bollaert EFR, Schleiss AJ (2008) Evaluation of high-velocity plunging jet-issuing characteristics as a basis for plunge pool analysis. J Hydraul Res 46(2):147–157. doi:10.1080/00221686.2008.9521852

    Article  Google Scholar 

  26. Melo JF, Pinheiro AN, Ramos CM (2006) Forces on plunge pool slabs: influence of joints location and width. J Hydraul Eng (ASCE) 132(1):49–60. doi:10.1061/(asce)0733-9429(2006)132:1(49)

  27. Müller G, Hull P, Allsop W, Bruce T, Cooker M, Franco L (2002) Wave effects on blockwork structures: model tests. J Hydraul Res 40(2):117–124. doi:10.1080/00221680209499854

    Article  Google Scholar 

  28. Pinheiro AN, Melo JF (2008) Effect of jet aeration on hydrodynamic forces on plunge pool floors. Can J Civ Eng 35(5):521–530. doi:10.1139/l07-138

    Article  Google Scholar 

Download references

Acknowledgments

This research project is funded by the Fundação para a Ciência e a Tecnologia (FCT, Portugal, Grant No. SFPH/BD/51074/2010) and LCH-EPFL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Duarte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, R., Schleiss, A.J. & Pinheiro, A. Influence of jet aeration on pressures around a block embedded in a plunge pool bottom. Environ Fluid Mech 15, 673–693 (2015). https://doi.org/10.1007/s10652-014-9392-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-014-9392-x

Keywords

Navigation