Skip to main content

Advertisement

Log in

Mobilization of heavy metals from contaminated paddy soil by EDDS, EDTA, and elemental sulfur

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

For enhanced phytoextraction, mobilization of heavy metals (HMs) from the soil solid phase to soil pore water is an important process. A pot incubation experiment mimicking field conditions was conducted to investigate the performance of three soil additives in mobilizing HMs from contaminated paddy soil (Gleyi-Stagnic Anthrosol): the [S, S]-isomer of ethylenediamine disuccinate (EDDS) with application rates of 2.3, 4.3, and 11.8 mmol kg−1 of soil, ethylenediamine tetraacetate (EDTA; 1.4, 3.8, and 7.5 mmol kg−1), and elemental sulfur (100, 200, and 400 mmol kg−1). Temporal changes in soil pore water HM and dissolved organic carbon concentrations and pH were monitored for a period of 119 days. EDDS was the most effective additive in mobilizing soil Cu. However, EDDS was only effective during the first 24 to 52 days, and was readily biodegraded with a half-life of 4.1 to 8.7 days. The effectiveness of EDDS decreased at the highest application rate, most probably as a result of depletion of the readily desorbable Cu pool in soil. EDTA increased the concentrations of Cu, Pb, Zn, and Cd in the soil pore water, and remained effective during the whole incubation period due to its persistence. The highest rate of sulfur application led to a decrease in pH to around 4. This increased the pore water HM concentrations, especially those of Zn and Cd. Concentrations of HMs in the soil pore water can be regulated to a large extent by choosing the proper application rate of EDDS, EDTA, or sulfur. Hence, a preliminary work such as our pot experiment in combination with further plant experiments (not included in this study) will provide a good tool to evaluate the applicability of different soil additives for enhanced phytoextraction of a specific soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allison, L. E. (1965). Organic carbon. In: C. A. Black (Ed.), Methods of soil analysis. II. Agronomy Monograph 9 (pp. 1367–1378). Madison, WI: American Society of Agronomy.

    Google Scholar 

  • Baker, A. J. M. (1981). Accumulators and excluders—Strategies in the response of plants on heavy metals. Journal of Plant Nutrition, 3, 677–686.

    Article  Google Scholar 

  • Blaylock, M. J., Slat, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., Ensley, B. D., & Raskin, I. (1997). Enhanced accumulation of Pb in India mustard by soil-applied chelating agents. Environmental Science & Technology, 31, 860–865.

    Article  Google Scholar 

  • Bucheli-Witschel, M., & Egli, T. (2001). Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiological Review, 25, 69–106.

    Article  Google Scholar 

  • Chardot, V., Massoura, S. T., Echevarria, G., Reeves, R. D., & Morel, J. L. (2005). Phytoextraction potential of the nickel hyperaccumulators Leptoplax emarginata and Bornmuellera tymphaea. International Journal of Phytoremediation, 7, 323–335.

    Article  Google Scholar 

  • Chen, H. M., Zheng, C. R., Zhou, D. M., & Wang, S. Q. (2004). Problems worthy of concern in soil environmental protection in China (In Chinese). Journal of Agro-Environmental Science, 2, 1244–1245.

    Google Scholar 

  • Chen, Y. H., Li, X. D., & Shen, Z. G. (2004). Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere, 57, 187–196.

    Article  Google Scholar 

  • Cui, Y. S., Dong, Y. T., Li, H. F., & Wang, Q. R. (2004). Effect of elemental sulfur on solubility of soil heavy metals and their uptake by maize. Environment International, 30, 323–328.

    Article  Google Scholar 

  • Cunningham, S. D., & Ow, D. W. (1996). Promises and prospects of phytoremediation. Plant Physiology, 110, 715–719.

    Google Scholar 

  • Fest, E. P. M. J., Temminghoff, E. J. M., Griffioen, J., & Van Riemsdijk, W. H. (2005). Proton buffering and metal leaching in sandy soils. Environmental Science & Technology, 39, 7901–7908.

    Article  Google Scholar 

  • Grčman, H., Velikonja-Bolta, Š., Vodnic, D., & Leštan, D. (2001). EDTA enhanced heavy metal phytoextraction metal accumulation, leaching and toxicity. Plant and Soil, 235, 105–114.

    Article  Google Scholar 

  • Grčman, H., Vodnic, D., Velikonja-Bolta, Š., & Leštan, D. (2003). Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoremediation. Journal of Environmental Quality, 32, 500–506.

    Article  Google Scholar 

  • Güçlü, K., & Apak, R. (2000). Modeling of copper(II), cadmium(II), and lead(II) adsorption on red mud from metal-EDTA mixture solutions. Journal of Colloid and Interface Science, 228, 238–252.

    Article  Google Scholar 

  • Hauser, L., Tandy, S., Schulin, R., & Nowack, B. (2005). Column extraction of heavy metals from soils using the biodegradable chelating agent EDDS. Environmental Science & Technology, 39, 6819–6824.

    Article  Google Scholar 

  • Huang, J. W. W., Chen, J. J., Berti, W. R., & Cunningham, S. D. (1997) Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextraction. Environmental Science & Technology, 31, 800–805.

    Article  Google Scholar 

  • Japenga, J., Koopmans, G. F., Song, J., & Römkens, P. F. A. M. (2007). A feasibility test to estimate the duration of phytoextraction of heavy metals from polluted soils. International Journal of Phytoremediation, 9, doi: 10.1080/15226510701232773.

  • Jaworska, J. S., Schowanek, D., & Feijtel, T. C. J. (1999). Environmental risk assessment for trisodium [S,S]-ethylene diamine disuccinate, a biodegradable chelator used in detergent applications. Chemosphere, 38, 3597–3625.

    Article  Google Scholar 

  • Jung, S. J., Jang, K. H., Sihn, E. H., Park, S. K., & Park, C. H. (2005) Characteristics of sulfur oxidation by a newly isolated Burkholderia spp. Journal of Microbiology and Biotechnology, 15, 716–721.

    Google Scholar 

  • Kayser, A., Wenger, K., Keller, A., Attinger, W., Felix, H. R., Gupta, S. K., & Schulin, R. (2000). Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: The use of NTA and sulfur amendments. Environmental Science & Technology, 34, 1778–1783.

    Article  Google Scholar 

  • Kim, C., Lee, Y., & Ong, S. K. (2003). Factors affecting EDTA extraction of lead from lead-contaminated soils. Chemosphere, 51, 845–853.

    Article  Google Scholar 

  • Koopmans, G. F., McDowell, R. W., Chardon, W. J., Oenema, O., & Dolfing, J. (2002). Soil phosphorus quantity-intensity relationships to predict increased soil phosphorus loss to overland and subsurface flow. Chemosphere, 48, 679–687.

    Article  Google Scholar 

  • Koopmans, G. F., Römkens, P. F. A. M., Song, J., Temminghoff, E. J. M., Japenga, J. (2007). Predicting the phytoextraction duration of heavy metal contaminated soils. Water Air & Soil Pollution, doi: 10.1007/s11270-006-9307-7.

  • Kos, B., & Leštan, D. (2003a). Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers. Environmental Science & Technology, 37, 624–629.

    Article  Google Scholar 

  • Kos, B., & Leštan, D. (2003b). Influence of a biodegradable ([S, S]-EDDS) and nondegradable (EDTA) chelate and hydrogel modified soil water sorption capacity on Pb phytoextraction and leaching. Plant and Soil, 253, 403–411.

    Article  Google Scholar 

  • Kos, B., & Leštan, D. (2004). Chelator induced phytoextraction and in situ washing of Cu. Environmental Pollution, 132, 333–339.

    Article  Google Scholar 

  • Luo, C. L., Shen, Z. G., & Li, X. D. (2005). Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere, 59, 1–11.

    Article  Google Scholar 

  • Madrid, L., & Diaz-Barrientose, E. (1992). Influence of carbonate on the reaction of heavy-metals in soils. European Journal of Soil Science, 43, 709–721.

    Article  Google Scholar 

  • Marchiol, L., Sacco, P., Assolari, S., & Zerbi, G. (2004). Reclamation of polluted soil: Phytoremediation potential of crop-related Brassica species. Water, Air, & Soil Pollution, 158, 345–356.

    Article  Google Scholar 

  • Martell, A. E., Smith, R. M., & Motekaitis, R. J. (1989). NIST Critically Selected Stability Constants of Metal Complexes, Version 6.0. Gaithersburg, MD: National Institute of Standards and Technology.

    Google Scholar 

  • Meers, E., Ruttens, A., Hopgood, M. J., Samson, D., & Tack, F. M. G. (2005). Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere, 58, 1011–1022.

    Article  Google Scholar 

  • Metsärinne, S., Tuhkanen, T., & Aksela, R. (2001). Photodegradation of ethylenediaminetetraacetic acid (EDTA) and ethylenediamine disuccinic acid (EDDS) within natural UV radiation range. Chemosphere, 45, 949–955.

    Article  Google Scholar 

  • Moser, U. S., & Olson, R. V. (1953). Sulfur oxidation in 4 soils as influenced by soil moisture tension and sulfur bacteria. Soil Science, 76, 251–257.

    Article  Google Scholar 

  • Nowack, B., Lutzenkirchen, T., Behra, P., & Sigg, L. (1996). Modeling the adsorption of metal-EDTA complexes onto oxides. Environmental Science & Technology, 30, 2397–2405.

    Article  Google Scholar 

  • Papassiopi, N., Tambouris, S., & Kontopoulos, A. (1999). Removal of heavy metals from calcareous contaminated soils by EDTA leaching. Water, Air, & Soil Pollution, 109, 1–15.

    Article  Google Scholar 

  • Raskin, I., Smith, R. D., & Salt, D. E. (1997). Phytoremediation of metals: Using plants to remove pollutants from the environment. Current Opinion in Biotechnology, 8, 221–226.

    Article  Google Scholar 

  • Salam, A. K., & Helmke, P. A. (1998). The pH dependence of free ionic activities and total dissolved concentrations of copper and cadmium in soil solution. Geoderma, 83, 281–291.

    Article  Google Scholar 

  • Salazar, F. S., Pandey, S., Narro, L., Perez, J. C., Ceballos, H., Parentoni, S. N., & Bahia, A. F. C. (1997). Diallel analysis of acid-soil tolerant and intolerant tropical maize populations. Crop Science, 37, 1457–1462.

    Article  Google Scholar 

  • Schowanek, D., Feijtel, T. C. J., Perkins, C. M., Hartman, F. A., Federle, T. W., & Larson, R. J. (1997). Biodegradation of [S,S], [R,R] and mixed stereoisomers of ethylene diamine disuccinic acid (EDDS), a transition metal chelator. Chemosphere, 34, 2375–2391.

    Article  Google Scholar 

  • Slaton, N. A., Norman, R. J., & Gilmour, J. T. (2001). Oxidation rates of commercial elemental sulfur products applied to an alkaline silt loam from Arkansas. Soil Science Society of America Journal, 65, 239–243.

    Article  Google Scholar 

  • Sun, B., Zhao, F. J., Lombi, E., & McGrath, S. P. (2001). Leaching of heavy metals from contaminated soils using EDTA. Environmental Pollution, 113, 111–120.

    Article  Google Scholar 

  • Tandy, S., Bossart, K., Mueller, R., Ritschel, J., Hauser, L., Schulin, R., & Nowack, B. (2004). Extraction of heavy metals from soils using biodegradable chelating agents. Environmental Science & Technology, 38, 937–944.

    Article  Google Scholar 

  • Tandy, S., Ammann, A., Schulin, R., & Nowack, B. (2006). Biodegradation and speciation of residual SS-ethylenediaminedisuccinic acid (EDDS) in soil solution left after soil washing. Environmental Pollution, 142, 191–199.

    Article  Google Scholar 

  • Vandevivere, P., Hammes, F., Verstraete, W., Feijtel, T. C. J., & Schowanek, D. (2001). Metal decontamination of soil, sediment, and sewage sludge by means of transition metal chelant [S,S]-EDDS. Journal of Environmental Engineering, 127, 802–811.

    Article  Google Scholar 

  • Vandevivere, P., Saveyn, H., Verstraete, W., Feijtel, T. C. J., & Schowanek, D. R. (2001). Biodegradation of metal-[S, S]-EDDS complexes. Environmental Science & Technology, 35, 1765–1770.

    Article  Google Scholar 

  • Weng, L. P., Temminghoff, E. J. M., & van Riemsdijk, W. H. (2001). Contribution of individual sorhents to the control of heavy metal activity in sandy soil. Environmental Science & Technology, 35, 4436–4443.

    Article  Google Scholar 

  • Zhao, F. J., Lombi, E., & McGrath, S. P. (2003). Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 249, 37–43.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Natural Science Foundation of China and Jiangsu province (project no. 40301046 and BK2004166), Chinese Ministry of Science and Technology (project no. 2004CB720403 and 2002CB410809), and the Royal Dutch Academy of Sciences (contract no. 04-PSA-E-05). Furthermore, the authors are thankful to Walter Schenkeveld for his critical comments on a previous version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Koopmans, G.F., Song, J. et al. Mobilization of heavy metals from contaminated paddy soil by EDDS, EDTA, and elemental sulfur. Environ Geochem Health 29, 221–235 (2007). https://doi.org/10.1007/s10653-006-9078-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-006-9078-5

Keywords

Navigation