Skip to main content

Advertisement

Log in

Chemical composition of groundwater and relative mortality for cardiovascular diseases in the Slovak Republic

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The study deals with the analysis of relationship between chemical composition of the groundwater/drinking water and the data on relative mortality for cardiovascular diseases (ReI) in the Slovak Republic. Primary data consist of the Slovak national database of groundwater analyses (20,339 chemical analyses, 34 chemical elements/compounds) and data on ReI collected for the 10-year period (1994–2003). The chemical and health data were unified in the same form and expressed as the mean values for each of 2883 municipalities within the Slovak Republic for further analysis. Artificial neural network was used as mathematic method for model data analysis. The most significant chemical elements having influence on ReI were identified together with their limit values (maximal acceptable, minimal necessary and optimal). Based on the results of calculations, made through the neural networks, the following ten chemical elements/parameters in the groundwater were defined as the most significant for ReI: Ca + Mg (mmol l−1), Ca, Mg, TDS, Cl, HCO3, SO4, NO3, SiO2 and PO4. The obtained results document the highest relationship between ReI and the groundwater contents of Ca + Mg (mmol l−1), Ca and Mg. Following limit values were set for the most significant groundwater chemicals/parameters: Ca + Mg 4.4–7.6 mmol l−1, Ca > 89.4 mg l−1 and Mg 42–78.1 mg l−1. At these concentration ranges, the relative mortality for cardiovascular diseases in the Slovak Republic reaches the lowest levels. These limit values are about twice higher in comparison with the current Slovak valid guideline values for the drinking water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anon. (2010). Government regulation of the Slovak republic No. 496/2010 on quality requirements on water used for human consumption and water quality control (in Slovak).

  • Bencko, V., Novák, J., & Suk, M. (2011). Health and natural conditions. (Medicine and geology). Praha. DOLIN, s.r.o. 389. (in Czech).

  • Bhatnagar, A. (2006). Environmental cardiology: Studying mechanistic links between pollution and heart disease. Circulation Research Journal of the American Heart Association, 99, 692–705. doi:10.1161/01.RES.0000243586.99701.cf.

    CAS  Google Scholar 

  • Catling, L., Abubakar, I., Lake, I., Swift, L., & Hunter, P. (2005). Review of evidence for relationship between incidence of cardiovascular disease and water hardness (p. 142). Norwich, Norfolk: University of East Anglia and Drinking Water Inspectorate.

    Google Scholar 

  • Cotruvo, J., & Bartram, J. (Eds.). (2009). Calcium and magnesium in drinking-water: Public health significance. Geneva: World Health Organization. 180.

    Google Scholar 

  • Darnley, A. G., Bjorklund, A., Bolviken, B., et al. (1995). A global geochemical database for environmental and resource management (Vol. 19, p. 122)., Earth Sciences Paris: UNESCO Publishing.

    Google Scholar 

  • Dawson, E. B., Frey, M. J., Moore, T. D., & McGanity, J. (1978). Relationship of metal metabolism to vascular disease mortality rates in Texas. American Journal of Clinical Nutrition, 31, 1188–1197.

    CAS  Google Scholar 

  • Ferrándiz, J., Abellán, J. J., Gómez-Rubio, V., López-Quílez, A., Sanmartín, P., Abellán, C., et al. (2004). Spatial analysis of the relationship between mortality from cardiovascular and cerebrovascular disease and drinking water hardness. Environmental Health Perspectives, 112(9), 1037–1044.

    Article  Google Scholar 

  • Gevrey, M., Dimopoulos, I., & Lek, S. (2003). Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecological Modelling, 160, 249–264.

    Article  Google Scholar 

  • Han, S., Liu, Y., & Yan, J. (2011). Neural network ensemble method study for wind power prediction. In Power and Energy Engineering Conference (APPEEC), 2011 Asia-Pacific, pp. 1–4.

  • Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Network, 2, 359–366.

    Article  Google Scholar 

  • Klinda, J., & Lieskovská, Z. (2010). State of the environment report of the Slovak Republic (p. 192). Bratislava: Ministry of Environment of the Slovak Republic.

    Google Scholar 

  • Kordík, J., Rapant, S., Bodiš, D., & Slaninka, I. (2000). Hydrogeochemické mapy v mierke 1:50 000—prezentácia výsledkov z vybraných regiónov Slovenska. Podzemná voda., 6(2), 130–137. (in Slovak).

    Google Scholar 

  • Kourentzes, N., Barrow, D. K., & Crone, S. F. (2014). Neural network ensemble operators for time series forecasting. Expert Systems with Applications, 41(9), 4235–4244.

    Article  Google Scholar 

  • Kousa, A., Havulinna, A. S., Moltchanova, E., Taskinen, O., Nikkarinen, M., Karvonen, J., & Karvonen, M. (2006). Calcium:magnesium ratio in local groundwater and incidence of acute myocardial infarction among males in rural Finland. Environmental Health Perspectives, 114(5), 730–734.

    Article  CAS  Google Scholar 

  • Kovalishyn, V. V., Tetko, I. V., Luik, A. I., Kholodovych, V. V., Villa, A. E. P., & Livingstone, D. J. (1998). Neural network studies. 3. Variable selection in the cascade-correlation learning architecture. Journal of Chemical Information and Computer Sciences, 38, 651–659.

    CAS  Google Scholar 

  • Kožíšek, F. (2003). Health significance of drinking water calcium and magnesium. Prague: National Institute of Public Health. 29.

    Google Scholar 

  • Kožíšek, F. (2004). Health risks from drinking demineralised water. World Health Organization, Geneva, 148-163 In: WHO (2005) Nutrients in drinking water. Water, sanitation and health protection and the human environment. Geneva: World Health Organization, p. 186.

  • Kriesel, D. (2007). Ein kleiner Überblick über Neuronale Netze (p. 238). Bonn: Rheinische Friedrich-Wilhelms Universität Bonn.

    Google Scholar 

  • Leurs, L. J., Schouten, L. J., Mons, M. N., Goldbohm, R. A., & Brandt, P. A. (2010). Relationship between tap water hardness, magnesium, and calcium concentration and mortality due to ischemic heart disease or stroke in the Netherlands. Environmental Health Perspectives, 118(3), 23–26.

    Google Scholar 

  • Maheswaran, R., Morris, S., Falconer, S., Grossinho, A., Perry, I., Wakefield, J., & Elliott, P. (1999). Magnesium in drinking water supplies and mortality from acute myocardial infarction in north west England. Heart, 82(4), 455–460.

    Article  CAS  Google Scholar 

  • Mitchell, E., Frisbie, S., & Sarkar, B. (2011). Exposure to multiple metals from groundwater—a global crisis: Geology, climate change, health effects, testing, and mitigation. Metallomics: The Royal Society of geochemistry. doi:10.1039/c1mt00052g.

    Google Scholar 

  • Monarca, S., Donato, F., Zerbini, I., Calderon, R. L., & Craun, G. F. (2006). Review of epidemiological studies on drinking water hardness and cardiovascular diseases. European Journal of Cardiovascular Prevention and Rehabilitation, 13(4), 495–506.

    Article  Google Scholar 

  • NHIC. (2012). Health statistics year book of the Slovak Republic 2011. Bratislava: National Health Information center. 257.

    Google Scholar 

  • OECD. (2013). Health at a glance 2013: OECD indicators. Paris: OECD Publishing. doi:10.1787/health_glance-2013-en.

    Google Scholar 

  • Opitz, D. W., & Shavlik, J. W. (1996). Actively searching for an effective neural network ensemble. Connection Science, 8(3–4), 337–354.

    Article  Google Scholar 

  • Pocock, S. J., Shaper, A. G., Cook, D. G., Packham, R. F., Lacey, R. F., Powell, P., & Russell, P. F. (1980). British Regional Heart Study: geographic variations in cardiovascular mortality, and the role of water quality. British Medical Journal, 280(6226), 1243–1249.

    Article  CAS  Google Scholar 

  • Rahman, A., & Husain, T. (2011). Nutrient mineral deficiency in drinking water and its impact on human health (pp. 95–106). Water Supply Systems: Demand Distribution and Pollution.

    Google Scholar 

  • Rapant, S., Cvečková, V., Dietzová, Z., Fajčíková, K., Hiller, E., Finkelman, R. B., & Škultétyová, S. (2014). The potential impact of geological environment on health status of residents of the Slovak Republic. Environmental Geochemistry and Health, 36, 543–561.

    Article  CAS  Google Scholar 

  • Rapant, S., Letkovičová, M., Cvečková, V., Fajčíková, K., Galbavý, J., & Letkovič, M. (2010). Environmental and health indicators of the Slovak Republic. Monography, State Geological Institute of Dionyz Stur, Bratislava, 279. (in Slovak). www.geology.sk/?pg=geois.ms_ezi_en.

  • Rapant, S., Rapošová, M., Bodiš, D., Marsina, K., & Slaninka, I. (1999). Environmental-geochemical mapping program in the Slovak Republic. Journal of Geochemical Exploration, 66(2), 151–158.

    Article  CAS  Google Scholar 

  • Rapant, S., Vrana, K., & Bodiš, D. (1996). Geochemical Atlas of Slovakia-part I. Groundwater (p. 127). Bratislava: Monography, Ministry of the Environment of the Slovak Republic, Geological Survey of Slovak Republic.

    Google Scholar 

  • Rosanoff, A. (2013). The high heart health value of drinking-water magnesium. Medical Hypotheses, 81(6), 1063–1065.

    Article  CAS  Google Scholar 

  • Rubenowitz-Lundin, E., & Hiscock, K. (2005). Water hardness and health effects. Chapter 13. Principles of Medical Geology (pp. 331–345). Netherlands: Springer.

    Google Scholar 

  • Rylander, R., Bonevik, H., & Rubenowitz, E. (1991). Magnesium and calcium in drinking water and cardiovascular mortality. Scandinavian Journal of Work Environment AND Health, 17, 91–94.

    Article  CAS  Google Scholar 

  • Sauvant, M. P., & Pepin, D. (2000). Geographic variation of the mortality from cerebrovascular disease and drinking water in a french small area (Puy de Dome). Environmental Research Section A, 84, 219–227.

    Article  CAS  Google Scholar 

  • Schroeder, H. A., & Kraemer, L. A. (1974). Cardiovascular mortality, municipal water, and corrosion. Archives of Environmental Health: An International Journal, 28(6), 303–311.

    Article  CAS  Google Scholar 

  • Shaper, A. G., Packham, R. F., & Pocock, S. J. (1980). The British regional heart study: Cardiovascular mortality and water quality. Journal of Environmental Pathology and Toxicology, 3, 89–111.

    Google Scholar 

  • SHMU. Slovak Hydrometeorological Institute, www.shmu.sk/en.

  • StatSoft. (1999). Electronic Statistics Textbook. (On-line manual), http://www.statsoft.com/textbook/statistics-glossary/s/button/s/.

  • Sturchio, E., Zanellato, M., Minoia, C., & Bemporad, E. (2013). Arsenic: Environmental contamination and exposure in Arsenic: Sources, environmental impact, toxicity and human health—A medical geology perspective (pp. 3–38). Hauppauge: Nova Science Publishers Inc.

    Google Scholar 

  • Vrana, K., Rapant, S., Bodiš, D., Marsina, K., Lexa, J., Pramuka, S., et al. (1997). Geochemical Atlas of Slovak Republic at a scale 1: 1 000 000. Journal of Geochemical Exploration, 60, 7–37.

    Article  Google Scholar 

  • Yang, Ch Y. (1998). Calcium and magnesium in drinking water and risk of death from cerebrovascular disease. Journal of the American Heart Disease, 29, 412–414.

    Google Scholar 

  • Yang, Ch Y, Chang, Ch Ch., Tsai, S. S., & Chiu, H. F. (2006). Calcium and magnesium in drinking water and risk of death from acute myocardial infarction in Taiwan. Environmental Research, 101, 407–411.

    Article  CAS  Google Scholar 

  • Zurada, J. M., Eberhart, R. C., & Cloete, I. (1995). Determining the significance of input parameters using sensitivity analysis. Lecture Notes Computer Science, 930, 382–388.

    Article  Google Scholar 

Download references

Acknowledgments

This research has been performed within the projects Geohealth (LIFE10 ENV/SK/000086) and Life for Krupina (LIFE12 ENV/SK/000094) which are financially supported by the EU’s funding instrument for the environment: Life + programme and Ministry of the Environment of the Slovak Republic. We thank Alex Stewart for constructive comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rapant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rapant, S., Fajčíková, K., Cvečková, V. et al. Chemical composition of groundwater and relative mortality for cardiovascular diseases in the Slovak Republic. Environ Geochem Health 37, 745–756 (2015). https://doi.org/10.1007/s10653-015-9700-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9700-5

Keywords

Navigation