Skip to main content

Advertisement

Log in

A comprehensive review on current status, mechanism, and possible sources of arsenic contamination in groundwater: a global perspective with prominence of Pakistan scenario

  • Review Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Arsenic(As)-mediated contamination of groundwater resources in different parts of the world is a consequence of natural or anthropogenic sources, leading to adverse effects on the environment and human health. Millions of people from different countries are unfortunately consuming groundwater contaminated with alarming levels of As. Exposure to the high concentration of As for an extended period of time can cause devastating effects on human health such as skin lesions, cardiac disorders, discolouration and cancer. Until 2018, about 11 districts of Sindh and Punjab provinces in Pakistan had been found with As contamination in groundwater beyond the national defined permissible level, i.e. 50 µg/L. Tharparkar and Hyderabad (in Sindh province) along Indus river and Lahore and Kasur (in Punjab province) are well-known hotspots sites of natural geogenic As contamination in groundwater. Higher levels of Sulfates (SO42−), Chloride (Cl) and Carbonate (CO32−) along with the elevated values of electrical conductivity and basic pH, as well as augmented presence of “As V” species, were all an indication of oxidizing condition in groundwater, and these oxidizing conditions are identified as the primary mechanism of As contamination into aquifers of Pakistan via oxidative dissolution. The main aim of this review is to summarize and discuss the current contamination status of As in groundwater water globally with a special focus on Pakistan scenario, isotopic evidence to track sources of groundwater recharge and its effects on As contamination in groundwater with various redox conditions prevailing in Pakistan. In addition, public health consequences of As contamination and mitigation strategies for As removal from water resources have been also highlighted. In this review, the data were extracted from various cutting edge studies published in national and international journals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abernathy, C. O., Thomas, D. J., & Calderon, R. L. (2003). Health effects and risk assessment of arsenic. The Journal of Nutrition, 133, 1536S–1538S.

    Article  CAS  Google Scholar 

  • Agusa, T., Kunito, T., Fujihara, J., Kubota, R., Minh, T. B., Thi Kim Trang, P., et al. (2004). Contamination by trace elements in groundwater of Vietnam. Biomedical Research on Trace Elements, 15, 339–341.

    CAS  Google Scholar 

  • Ahmad, T., Kahlown, M., Tahir, A. & Rashid, H. (2004). Arsenic an emerging issue: Experiences from Pakistan. In: Proceedings of the 30th WEDC international conference (pp. 459–466).

  • Ahmed, M. F. (2001). An overview of arsenic removal technologies in Bangladesh and India. In Proceedings of BUET-UNU international workshop on technologies for arsenic removal from drinking water, Dhaka (pp. 5–7). Citeseer.

  • Anawar, H. M., Akai, J., Komaki, K., Terao, H., Yoshioka, T., Ishizuka, T., et al. (2003). Geochemical occurrence of arsenic in groundwater of Bangladesh: Sources and mobilization processes. Journal of Geochemical Exploration, 77, 109–131.

    Article  CAS  Google Scholar 

  • Aposhian, H. V., Gurzau, E. S., Le, X. C., Gurzau, A., Healy, S. M., Lu, X., et al. (2000). Occurrence of monomethylarsonous acid in urine of humans exposed to inorganic arsenic. Chemical Research in Toxicology, 13, 693–697.

    Article  CAS  Google Scholar 

  • Arain, G. M., Aslam, M., & Majidano, S. A. (2007). A Preliminary Study on the arsenic contamination of underground water. Journal of the Chemical Society of Pakistan, 29, 463.

    CAS  Google Scholar 

  • Arain, M. B., Kazi, T. G., Baig, J. A., Jamali, M. K., Afridi, H. I., Jalbani, N., et al. (2009a). Respiratory effects in people exposed to arsenic via the drinking water and tobacco smoking in southern part of Pakistan. Science of the Total Environment, 407, 5524–5530.

    Article  CAS  Google Scholar 

  • Arain, M., Kazi, T., Baig, J., Jamali, M., Afridi, H., Shah, A., et al. (2009b). Determination of arsenic levels in lake water, sediment, and foodstuff from selected area of Sindh, Pakistan: Estimation of daily dietary intake. Food and Chemical Toxicology, 47, 242–248.

    Article  CAS  Google Scholar 

  • Aziz, H. M., Bhattacharya, P., Sracek, O., Ahmed, K. M., von Brömssen, M., & Jacks, G. (2009). Geological controls on groundwater chemistry and arsenic mobilization: Hydrogeochemical study along an EW transect in the Meghna basin, Bangladesh. Journal of Hydrology, 378, 105–118.

    Article  CAS  Google Scholar 

  • Azizullah, A., Khattak, M. N. K., Richter, P., & Häder, D.-P. (2011). Water pollution in Pakistan and its impact on public health: A review. Environment International, 37, 479–497.

    Article  CAS  Google Scholar 

  • Baig, J. A., Kazi, T. G., Arain, M. B., Afridi, H. I., Kandhro, G. A., Sarfraz, R. A., et al. (2009). Evaluation of arsenic and other physico-chemical parameters of surface and ground water of Jamshoro, Pakistan. Journal of Hazardous Materials, 166, 662–669.

    Article  CAS  Google Scholar 

  • Baig, J. A., Kazi, T. G., Shah, A. Q., Afridi, H. I., Kandhro, G. A., Khan, S., et al. (2011). Evaluation of arsenic levels in grain crops samples, irrigated by tube well and canal water. Food and Chemical Toxicology, 49, 265–270.

    Article  CAS  Google Scholar 

  • Bard, A. J., Parsons, R., & Jordan, J. (1985). Standard potentials in aqueous solution. Boca Raton: CRC Press.

    Google Scholar 

  • Barringer, J. L., & Reilly, P. A. (2013). Arsenic in groundwater: A summary of sources and the biogeochemical and hydrogeologic factors affecting arsenic occurrence and mobility. New York: INTECH Open Access Publisher.

    Google Scholar 

  • Berg, M., Stengel, C., Trang, P. T. K., Viet, P. H., Sampson, M. L., Leng, M., et al. (2007). Magnitude of arsenic pollution in the Mekong and Red River Deltas: Cambodia and Vietnam. Science of the Total Environment, 372, 413–425.

    Article  CAS  Google Scholar 

  • Berg, M., Tran, H. C., Nguyen, T. C., Pham, H. V., Schertenleib, R., & Giger, W. (2001). Arsenic contamination of groundwater and drinking water in Vietnam: A human health threat. Environmental Science and Technology, 35, 2621–2626.

    Article  CAS  Google Scholar 

  • Berg, M., Trang, P. T. K., Stengel, C., Buschmann, J., Viet, P. H., Van Dan, N., et al. (2008). Hydrological and sedimentary controls leading to arsenic contamination of groundwater in the Hanoi area, Vietnam: The impact of iron-arsenic ratios, peat, river bank deposits, and excessive groundwater abstraction. Chemical Geology, 249, 91–112.

    Article  CAS  Google Scholar 

  • Bhutta, M., Chaudhry, M. & Chaudhry, A. (2005). Groundwater quality and availability in Pakistan. In Proceedings of the seminar on strategies to address the present and future water quality issues.

  • Bibi, M., Ahmed, F., & Ishiga, H. (2008). Geochemical study of arsenic concentrations in groundwater of the Meghna River Delta, Bangladesh. Journal of Geochemical Exploration, 97, 43–58.

    Article  CAS  Google Scholar 

  • Bibi, S., Farooqi, A., Hussain, K., & Haider, N. (2015). Evaluation of industrial based adsorbents for simultaneous removal of arsenic and fluoride from drinking water. Journal of Cleaner Production, 87, 882–896.

    Article  CAS  Google Scholar 

  • Bissen, M., & Frimmel, F. H. (2003). Arsenic: A review. Part I—Occurrence, toxicity, speciation, mobility. Acta Hydrochimica et Hydrobiologica, 31, 9–18.

    Article  CAS  Google Scholar 

  • Bowell, R. J., Alpers, C. N., Jamieson, H. E., Nordstrom, D. K., & Majzlan, J. (2014). The environmental geochemistry of arsenic: An overview. Reviews in Mineralogy and Geochemistry, 79, 1–16.

    Article  Google Scholar 

  • Boyle, D., Turner, R., & Hall, G. (1998). Anomalous arsenic concentrations in groundwaters of an island community, Bowen Island, British Columbia. Environmental Geochemistry and Health, 20, 199–212.

    Article  CAS  Google Scholar 

  • Brahman, K. D., Kazi, T. G., Afridi, H. I., Naseem, S., Arain, S. S., & Ullah, N. (2013). Evaluation of high levels of fluoride, arsenic species and other physicochemical parameters in underground water of two sub districts of Tharparkar, Pakistan: A multivariate study. Water Research, 47, 1005–1020.

    Article  CAS  Google Scholar 

  • Brammer, H., & Ravenscroft, P. (2009). Arsenic in groundwater: A threat to sustainable agriculture in South and South-east Asia. Environment International, 35, 647–654.

    Article  CAS  Google Scholar 

  • Bundschuh, J., Litter, M., Ciminelli, V. S., Morgada, M. E., Cornejo, L., Hoyos, S. G., et al. (2010). Emerging mitigation needs and sustainable options for solving the arsenic problems of rural and isolated urban areas in Latin America: A critical analysis. Water Research, 44, 5828–5845.

    Article  CAS  Google Scholar 

  • Cadic, G. (2002). Problème de l'arsenic dans l'eau potable en savoie - Phase 1 : pré-diagnostic. Montpellier, ENGREF; Chambéry, Conseil Général de Savoie. 45 p.

  • Carrizales, L., Razo, I., Téllez-Hernández, J. I., Torres-Nerio, R., Torres, A., Batres, L. E., et al. (2006). Exposure to arsenic and lead of children living near a copper-smelter in San Luis Potosi, Mexico: Importance of soil contamination for exposure of children. Environmental Research, 101, 1–10.

    Article  CAS  Google Scholar 

  • Chadha, D., & Ray, S. (1999). High incidence of arsenic in groundwater in West Bengal (p. 138). West Bengal: CGWB Report.

    Google Scholar 

  • Chowdhury, T. R., Basu, G. K., Mandal, B. K., Biswas, B. K., Samanta, G., Chowdhury, U. K., et al. (1999). Arsenic poisoning in the Ganges delta. Nature, 401, 545–546.

    Article  CAS  Google Scholar 

  • Christensen, T. H., Bjerg, P. L., Banwart, S. A., Jakobsen, R., Heron, G., & Albrechtsen, H.-J. (2000). Characterization of redox conditions in groundwater contaminant plumes. Journal of Contaminant Hydrology, 45, 165–241.

    Article  CAS  Google Scholar 

  • Chwirka, J. D., Thomson, B. M., & Stomp, J. M., III. (2000). Removing arsenic from groundwater. Journal of American Water Works Association, 92, 79.

    Article  CAS  Google Scholar 

  • Clark, I. D., & Fritz, P. (1997). Environmental isotopes in hydrogeology. Boca Raton: CRC Press.

    Google Scholar 

  • Compendium, F. A. (1975). Munneapolis, Vol. 13. Los Angeles: The Miller Publishing Company.

    Google Scholar 

  • Cook, J. (1987). Left bank outfall drain stage I project: Scavenger well studies and pilot project. Nottingham: British Geological Survey.

    Google Scholar 

  • Cook, P. G., & Herczeg, A. L. (2012). Environmental tracers in subsurface hydrology. Springer.

  • Cullen, W. R., & Reimer, K. J. (1989). Arsenic speciation in the environment. Chemical Reviews, 89, 713–764.

    Article  CAS  Google Scholar 

  • Das, H., Mitra, A. K., Sengupta, P., Hossain, A., Islam, F., & Rabbani, G. (2004). Arsenic concentrations in rice, vegetables, and fish in Bangladesh: A preliminary study. Environment International, 30, 383–387.

    Article  CAS  Google Scholar 

  • Deng, Y., Wang, Y., et al. (2009). Speciation and enrichment of arsenic in strongly reducing shallow aquifers at western Hetao Plain, northern China. Environmental Geology, 56(7), 1467–1477.

    Article  CAS  Google Scholar 

  • Farooq, S., Hashmi, I., Qazi, I. A., Qaiser, S., & Rasheed, S. (2008). Monitoring of coliforms and chlorine residual in water distribution network of Rawalpindi, Pakistan. Environmental Monitoring and Assessment, 140, 339–347.

    Article  CAS  Google Scholar 

  • Farooqi, A., Masuda, H., & Firdous, N. (2007a). Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. Environmental Pollution, 145, 839–849.

    Article  CAS  Google Scholar 

  • Farooqi, A., Masuda, H., Kusakabe, M., Naseem, M., & Firdous, N. (2007b). Distribution of highly arsenic and fluoride contaminated groundwater from east Punjab, Pakistan, and the controlling role of anthropogenic pollutants in the natural hydrological cycle. Geochemical Journal, 41, 213–234.

    Article  CAS  Google Scholar 

  • Fields, K. A., Chen, A. S., & Wang, L. (2000a). Arsenic removal from drinking water by coagulation/filtration and lime softening plants. Washington: National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency.

    Google Scholar 

  • Fields, K. A., Chen, A. S., Wang, L., & Sorg, T. J. (2000b). Arsenic removal from drinking water by iron removal plants. Washington: National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency.

    Google Scholar 

  • Gao, X., & Li, P. (2012). Concentration and fractionation of trace metals in surface sediments of intertidal Bohai Bay, China. Marine Pollution Bulletin, 64, 1529–1536.

    Article  CAS  Google Scholar 

  • Gomez-Caminero, A., Howe, P. D., Hughes, M., Kenyon, E., Lewis, D., Moore, M., Aitio, A., et al. (2001). Environmental health criteria 224 arsenic and arsenic compounds. Geneva: World Health Organization.

  • Greenman, D. W., Swarzenski, W. V., & Bennett, G. D. (1967). Ground-water hydrology of the Punjab, West Pakistan, with emphasis on problems caused by canal irrigation. Washington: US Government Printing Office.

    Google Scholar 

  • Guo, Q., Guo, H., Yang, Y., Han, S., & Zhang, F. (2014). Hydrogeochemical contrasts between low and high arsenic groundwater and its implications for arsenic mobilization in shallow aquifers of the northern Yinchuan Basin, PR China. Journal of Hydrology, 518, 464–476.

    Article  CAS  Google Scholar 

  • Guo, H., Zhang, B., Wang, G., & Shen, Z. (2010). Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao Basin, Inner Mongolia. Chemical Geology, 270, 117–125.

    Article  CAS  Google Scholar 

  • Gupta, S., & Gupta, V. (2013). Speciation and toxicity of arsenic: A human carcinogen. Research Journal of Recent Sciences, 2, 45–53.

    Google Scholar 

  • Gurung, J. K., Ishiga, H., & Khadka, M. S. (2005). Geological and geochemical examination of arsenic contamination in groundwater in the Holocene Terai Basin, Nepal. Environmental Geology, 49, 98–113.

    Article  CAS  Google Scholar 

  • Halim, M., Majumder, R., Nessa, S., Oda, K., Hiroshiro, Y., Saha, B., et al. (2009). Groundwater contamination with arsenic in Sherajdikhan, Bangladesh: Geochemical and hydrological implications. Environmental Geology, 58, 73–84.

    Article  CAS  Google Scholar 

  • Haque, S., & Johannesson, K. H. (2006). Arsenic concentrations and speciation along a groundwater flow path: The Carrizo Sand aquifer, Texas, USA. Chemical Geology, 228, 57–71.

    Article  CAS  Google Scholar 

  • Haque, M. N., Morrison, G., Perrusquia, G., Gutierréz, M., Aguilera, A., Cano-Aguilera, I., et al. (2007). Characteristics of arsenic adsorption to sorghum biomass. Journal of Hazardous Materials, 145, 30–35.

    Article  CAS  Google Scholar 

  • Haque, I. U., Nabi, D., Baig, M., Hayat, W., & Trefry, M. (2008). Groundwater arsenic contamination: A multi-directional emerging threat to water scarce areas of Pakistan. IAHS Publication, 324, 24.

    CAS  Google Scholar 

  • Hashmi, I., Farooq, S., & Qaiser, S. (2009). Chlorination and water quality monitoring within a public drinking water supply in Rawalpindi Cantt (Westridge and Tench) area, Pakistan. Environmental Monitoring and Assessment, 158, 393–403.

    Article  CAS  Google Scholar 

  • Hassan, K. M., Fukuhara, T., Hai, F. I., Bari, Q. H., & Islam, K. M. S. (2009). Development of a bio-physicochemical technique for arsenic removal from groundwater. Desalination, 249, 224–229.

    Article  CAS  Google Scholar 

  • Hinrichsen, D., & Tacio, H. (2002). The coming freshwater crisis is already here. The linkages between population and water. Washington, DC: Woodrow Wilson International Center for Scholars.

    Google Scholar 

  • Hopenhayn-Rich, C., Biggs, M. L., Fuchs, A., Bergoglio, R., Tello, E. E., Nicolli, H., et al. (1996). Bladder cancer mortality associated with arsenic in drinking water in Argentina. Epidemiology, 7, 117–124.

    Article  CAS  Google Scholar 

  • Hudson-Edwards, K. A., & Archer, J. (2012). Geochemistry of As-, F-and B-bearing waters in and around San Antonio de los Cobres, Argentina, and implications for drinking and irrigation water quality. Journal of Geochemical Exploration, 112, 276–284.

    Article  CAS  Google Scholar 

  • Hug, S. J., Canonica, L., Wegelin, M., Gechter, D., & Von Gunten, U. (2001). Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters. Environmental Science and Technology, 35, 2114–2121.

    Article  CAS  Google Scholar 

  • Iqbal, S. (2001). Arsenic contamination in Pakistan. In Presentation at a UN-ESCAP meeting, geology and health: Solving the arsenic crisis in the Asia-Pacific region.

  • Jabeen, S., Shah, M., Ahmed, I., Khan, S., & Hayat, M. (2014). Physico-chemical parameters of surface and ground water and their environmental impact assessment in the Haripur Basin, Pakistan. Journal of Geochemical Exploration, 138, 1–7.

    Article  CAS  Google Scholar 

  • Jain, C., & Singh, R. (2012). Technological options for the removal of arsenic with special reference to South East Asia. Journal of Environmental Management, 107, 1–18.

    Article  CAS  Google Scholar 

  • Jehangir, M. (2002). Bacteriological contamination and upward trend in nitrate contents, observed in drinking water of Rawalpindi and Islamabad. Pakistan: The Network Consumer Protection in Pakistan.

    Google Scholar 

  • Kazi, T., Arain, M., Jamali, M., Jalbani, N., Afridi, H., Sarfraz, R., et al. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotoxicology and Environmental Safety, 72, 301–309.

    Article  CAS  Google Scholar 

  • Kendall, C. (1998). Tracing nitrogen sources and cycling in catchments. Isotope Tracers in Catchment Hydrology, 1, 519–576.

    Article  Google Scholar 

  • Kim, K.-W., Chanpiwat, P., Hanh, H. T., Phan, K., & Sthiannopkao, S. (2011). Arsenic geochemistry of groundwater in Southeast Asia. Frontiers of Medicine, 5, 420–433.

    Article  Google Scholar 

  • Kim, M.-J., Nriagu, J., & Haack, S. (2002). Arsenic species and chemistry in groundwater of southeast Michigan. Environmental Pollution, 120, 379–390.

    Article  CAS  Google Scholar 

  • Kinniburgh, D. (2001). Arsenic contamination of groundwater in Bangladesh. Final Report. http://www.bgs.ac.uk/research/groundwater/health/arsenic/Bangladesh/reports. html.

  • Kinniburgh, D., Smedley, P., Davies, J., Huq, S., Ahmad, K. & Ahmed, K. (2000). The groundwater arsenic problem in Bangladesh. In: WEDC conference (pp. 230–231).

  • Kinniburgh, D. G., & Kosmus, W. (2002). Arsenic contamination in groundwater: Some analytical considerations. Talanta, 58, 165–180.

    Article  CAS  Google Scholar 

  • Korte, N. (1991). Naturally occurring arsenic in groundwaters of the Midwestern United States. Environmental Geology and Water Sciences, 18, 137–141.

    Article  CAS  Google Scholar 

  • Kouras, A., Katsoyiannis, I., & Voutsa, D. (2007). Distribution of arsenic in groundwater in the area of Chalkidiki, Northern Greece. Journal of Hazardous Materials, 147, 890–899.

    Article  CAS  Google Scholar 

  • Krishna, A. K., Satyanarayanan, M., & Govil, P. K. (2009). Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: A case study from Patancheru, Medak District, Andhra Pradesh, India. Journal of Hazardous Materials, 167, 366–373.

    Article  CAS  Google Scholar 

  • Kumar, P., Kumar, M., Ramanathan, A., & Tsujimura, M. (2010). Tracing the factors responsible for arsenic enrichment in groundwater of the middle Gangetic Plain, India: A source identification perspective. Environmental Geochemistry and Health, 32, 129–146.

    Article  CAS  Google Scholar 

  • Liu, C.-W., Lin, K.-H., & Kuo, Y.-M. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the Total Environment, 313, 77–89.

    Article  CAS  Google Scholar 

  • Ma, H. Z., Xia, Y. J., Wu, K. G., Sun, T. Z., & Mumford, J. L. (1999). Human exposure to arsenic and health effects in Bayingnormen, Inner Mongolia. In W. R. Chappell, C. O. Abernathy, & R. Calderon (Eds.), Arsenic exposure and health effects (pp. 127–131). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Malana, M. A., & Khosa, M. A. (2011). Groundwater pollution with special focus on arsenic, Dera Ghazi Khan-Pakistan. Journal of Saudi Chemical Society, 15, 39–47.

    Article  CAS  Google Scholar 

  • Mandal, B. K. (1996). Arsenic in groundwater in seven districts of West Bengal, India-the biggest arsenic calamity in the world. Current Scienc, 70, 976–986.

    CAS  Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: A review. Talanta, 58, 201–235.

    Article  CAS  Google Scholar 

  • Masuda, H., Mitamura, M., Farooqi, A. M., Muhanmad, N., Owada, M., Okazaki, K., et al. (2010). Geologic structure and geochemical characteristics of sediments of fluoride and arsenic contaminated groundwater aquifer in Kalalanwala and its vicinity, Punjab, Pakistan. Geochemical Journal, 44, 489–505.

    Article  CAS  Google Scholar 

  • Matschullat, J. (2000). Arsenic in the geosphere: A review. Science of the Total Environment, 249, 297–312.

    Article  CAS  Google Scholar 

  • Matschullat, J., Borba, R. P., Deschamps, E., Figueiredo, B. R., Gabrio, T., & Schwenk, M. (2000). Human and environmental contamination in the Iron Quadrangle, Brazil. Applied Geochemistry, 15, 181–190.

    Article  CAS  Google Scholar 

  • McClintock, T. R., Chen, Y., Bundschuh, J., Oliver, J. T., Navoni, J., Olmos, V., et al. (2012). Arsenic exposure in Latin America: Biomarkers, risk assessments and related health effects. Science of the Total Environment, 429, 76–91.

    Article  CAS  Google Scholar 

  • Mladenov, N., Wolski, P., Hettiarachchi, G. M., Murray-Hudson, M., Enriquez, H., Damaraju, S., et al. (2014). Abiotic and biotic factors influencing the mobility of arsenic in groundwater of a through-flow island in the Okavango Delta, Botswana. Journal of Hydrology, 518, 326–341.

    Article  CAS  Google Scholar 

  • Muhammad, S., Shah, M. T., & Khan, S. (2010). Arsenic health risk assessment in drinking water and source apportionment using multivariate statistical techniques in Kohistan region, northern Pakistan. Food and Chemical Toxicology, 48, 2855–2864.

    Article  CAS  Google Scholar 

  • Mukherjee, A., Bhattacharya, P., Shi, F., Fryar, A. E., Mukherjee, A. B., Xie, Z. M., et al. (2009). Chemical evolution in the high arsenic groundwater of the Huhhot basin (Inner Mongolia, PR China) and its difference from the western Bengal basin (India). Applied Geochemistry, 24, 1835–1851.

    Article  CAS  Google Scholar 

  • Mukherjee, A., & Fryar, A. E. (2008). Deeper groundwater chemistry and geochemical modeling of the arsenic affected western Bengal basin, West Bengal, India. Applied Geochemistry, 23, 863–894.

    Article  CAS  Google Scholar 

  • Mukherjee, A., Fryar, A. E., & Rowe, H. D. (2007). Regional-scale stable isotopic signatures of recharge and deep groundwater in the arsenic affected areas of West Bengal, India. Journal of Hydrology, 334, 151–161.

    Article  Google Scholar 

  • Mukherjee, A., Sengupta, M. K., Hossain, M. A., Ahamed, S., Das, B., Nayak, B., et al. (2006). Arsenic contamination in groundwater: A global perspective with emphasis on the Asian scenario. Journal of Health, Population and Nutrition, 24, 142–163.

    Google Scholar 

  • Mushtaq, N., Younas, A., Mashiatullah, A., Javed, T., Ahmad, A., & Farooqi, A. (2018). Hydrogeochemical and isotopic evaluation of groundwater with elevated arsenic in alkaline aquifers in Eastern Punjab, Pakistan. Chemosphere, 200, 576.

    Article  CAS  Google Scholar 

  • Nath, B., Jean, J.-S., Lee, M.-K., Yang, H.-J., & Liu, C.-C. (2008). Geochemistry of high arsenic groundwater in Chia-Nan plain, Southwestern Taiwan: Possible sources and reactive transport of arsenic. Journal of Contaminant Hydrology, 99, 85–96.

    Article  CAS  Google Scholar 

  • Navoni, J., De Pietri, D., Olmos, V., Gimenez, C., Mitre, G. B., de Titto, E., et al. (2014). Human health risk assessment with spatial analysis: Study of a population chronically exposed to arsenic through drinking water from Argentina. Science of the Total Environment, 499, 166–174.

    Article  CAS  Google Scholar 

  • Nguyen, V. A., Bang, S., Viet, P. H., & Kim, K.-W. (2009). Contamination of groundwater and risk assessment for arsenic exposure in Ha Nam province, Vietnam. Environment International, 35, 466–472.

    Article  CAS  Google Scholar 

  • Niazi, N. K. (2017). Comment on the “Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley”. Science Advances, 3(8), 5.

    Google Scholar 

  • Nickson, R., McArthur, J., Burgess, W., Ahmed, K. M., Ravenscroft, P., & Rahmanñ, M. (1998). Arsenic poisoning of Bangladesh groundwater. Nature, 395, 338.

    Article  CAS  Google Scholar 

  • Nickson, R., McArthur, J., Ravenscroft, P., Burgess, W., & Ahmed, K. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15, 403–413.

    Article  CAS  Google Scholar 

  • Nickson, R., McArthur, J., Shrestha, B., Kyaw-Myint, T., & Lowry, D. (2005). Arsenic and other drinking water quality issues, Muzaffargarh District, Pakistan. Applied Geochemistry, 20, 55–68.

    Article  CAS  Google Scholar 

  • Nimick, D. A. (1998). Arsenic hydrogeochemistry in an irrigated river valley: A reevaluation. Ground Water, 36, 743.

    Article  CAS  Google Scholar 

  • Nitzsche, K. S., Lan, V. M., Trang, P. T. K., Viet, P. H., Berg, M., Voegelin, A., et al. (2015a). Arsenic removal from drinking water by a household sand filter in Vietnam: Effect of filter usage practices on arsenic removal efficiency and microbiological water quality. Science of the Total Environment, 502, 526–536.

    Article  CAS  Google Scholar 

  • Nitzsche, K. S., Weigold, P., Lösekann-Behrens, T., Kappler, A., & Behrens, S. (2015b). Microbial community composition of a household sand filter used for arsenic, iron, and manganese removal from groundwater in Vietnam. Chemosphere, 138, 47–59.

    Article  CAS  Google Scholar 

  • Pakistan, W. (2007). Pakistan’s water at risk, water and health related issues and key recommendations. Lahore: Freshwater and Toxics Programme, Communications Division, WWF Pakistan.

    Google Scholar 

  • Parmar, S., & Singh, V. (2015). Phytoremediation approaches for heavy metal pollution: A review. Journal of Plant Science and Research, 2, 139.

    Google Scholar 

  • Phan, K., Sthiannopkao, S., Kim, K.-W., Wong, M. H., Sao, V., Hashim, J. H., et al. (2010). Health risk assessment of inorganic arsenic intake of Cambodia residents through groundwater drinking pathway. Water Research, 44, 5777–5788.

    Article  CAS  Google Scholar 

  • Podgorski, J. E., Eqani, S. A. M. A. S., Khanam, T., Ullah, R., Shen, H., & Berg, M. (2017). Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley. Science Advances, 3, e1700935.

    Article  CAS  Google Scholar 

  • Polizzotto, M. L., Kocar, B. D., Benner, S. G., Sampson, M., & Fendorf, S. (2008). Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature, 454, 505–508.

    Article  CAS  Google Scholar 

  • Rabbani, U., Mahar, G., Siddique, A., & Fatmi, Z. (2017). Risk assessment for arsenic-contaminated groundwater along River Indus in Pakistan. Environmental Geochemistry and Health, 39, 179–190.

    Article  CAS  Google Scholar 

  • Rafique, T., Naseem, S., Usmani, T. H., Bashir, E., Khan, F. A., & Bhanger, M. I. (2009). Geochemical factors controlling the occurrence of high fluoride groundwater in the Nagar Parkar area, Sindh, Pakistan. Journal of Hazardous Materials, 171, 424–430.

    Article  CAS  Google Scholar 

  • Rahman, A., Lee, H., & Khan, M. A. (1997). Domestic water contamination in rapidly growing megacities of Asia: Case of Karachi, Pakistan. Environmental Monitoring and Assessment, 44, 339–360.

    Article  CAS  Google Scholar 

  • Rasool, A., Farooqi, A., Masood, S., & Hussain, K. (2016a). Arsenic in groundwater and its health risk assessment in drinking water of Mailsi, Punjab, Pakistan. Human and Ecological Risk Assessment: An International Journal, 22, 187–202.

    Article  CAS  Google Scholar 

  • Rasool, A., Farooqi, A., Xiao, T., Masood, S., & Kamran, M. A. (2016b). Elevated levels of arsenic and trace metals in drinking water of Tehsil Mailsi, Punjab, Pakistan. Journal of Geochemical Exploration, 169, 89–99.

    Article  CAS  Google Scholar 

  • Rasool, A., Xiao, T., Baig, Z. T., Masood, S., Mostofa, K. M., & Iqbal, M. (2015). Co-occurrence of arsenic and fluoride in the groundwater of Punjab, Pakistan: Source discrimination and health risk assessment. Environmental Science and Pollution Research, 22, 19729–19746.

    Article  CAS  Google Scholar 

  • Ravenscroft, P., Brammer, H., & Richards, K. (2009). Arsenic pollution: A global synthesis. London: Wiley.

    Book  Google Scholar 

  • Robertson, F. N. (1989). Arsenic in ground-water under oxidizing conditions, south-west United States. Environmental Geochemistry and Health, 11, 171–185.

    Article  CAS  Google Scholar 

  • Rosemann, N. (2005). Drinking water crises in Pakistan and the issue of bottled water: The Case of Nestle’s Pure Life. Islamabad: Actionaid Pakistan.

    Google Scholar 

  • Rowland, H. A., Omoregie, E. O., Millot, R., Jimenez, C., Mertens, J., Baciu, C., et al. (2011). Geochemistry and arsenic behaviour in groundwater resources of the Pannonian Basin (Hungary and Romania). Applied Geochemistry, 26, 1–17.

    Article  CAS  Google Scholar 

  • Saltori, R. (2004). Arsenic contamination in Afghanistan: Preliminary findings (pp. 1–15). Kabul: DACCAR.

    Google Scholar 

  • Sancha, A. M. (2006). Review of coagulation technology for removal of arsenic: Case of Chile. Journal of Health, Population and Nutrition, 24, 267–272.

    Google Scholar 

  • Sancha, A., & Castro de Esparza, M. (2000). Arsenic status and handling in Latin America. Santiago: Universidad de Chile.

    Google Scholar 

  • Shah, A. Q., Kazi, T. G., Arain, M. B., Jamali, M. K., Afridi, H. I., Jalbani, N., et al. (2009). Accumulation of arsenic in different fresh water fish species: Potential contribution to high arsenic intakes. Food Chemistry, 112, 520–524.

    Article  CAS  Google Scholar 

  • Shakoor, M. B., Bibi, I., Niazi, N. K., Shahid, M., Nawaz, M. F., Farooqi, A., et al. (2018). The evaluation of arsenic contamination potential, speciation and hydrogeochemical behaviour in aquifers of Punjab, Pakistan. Chemosphere, 199, 737–746.

    Article  CAS  Google Scholar 

  • Shemirani, F., Baghdadi, M., & Ramezani, M. (2005). Preconcentration and determination of ultra trace amounts of arsenic(III) and arsenic(V) in tap water and total arsenic in biological samples by cloud point extraction and electrothermal atomic absorption spectrometry. Talanta, 65, 882–887.

    Article  CAS  Google Scholar 

  • Smedley, P. (2001). Groundwater Quality: Pakistan. British Geological Survey.

  • Smedley, P. (2005). Arsenic occurrence in groundwater in South and East Asia. In: Kemper, K. (Ed.) Towards a more effective operational response. Arsenic contamination of groundwater in South and East Asian Countries (pp. 20–97). New Delhi, India: World Bank. http://nora.nerc.ac.uk/id/eprint/500048/1/MyVersion2013.pdf.

  • Smedley, P., Edmunds, W., & Pelig-Ba, K. (1996). Mobility of arsenic in groundwater in the Obuasi gold-mining area of Ghana: Some implications for human health. Geological Society, London, Special Publications, 113, 163–181.

    Article  CAS  Google Scholar 

  • Smedley, P., & Kinniburgh, D. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Smedley, P., Nicolli, H., Macdonald, D., Barros, A., & Tullio, J. (2002). Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Applied Geochemistry, 17, 259–284.

    Article  CAS  Google Scholar 

  • Stanger, G., Van Truong, T., Ngoc, K. L. T. M., Luyen, T., & Thanh, T. T. (2005). Arsenic in groundwaters of the Lower Mekong. Environmental Geochemistry and Health, 27, 341–357.

    Article  CAS  Google Scholar 

  • Stüben, D., Berner, Z., Chandrasekharam, D., & Karmakar, J. (2003). Arsenic enrichment in groundwater of West Bengal, India: Geochemical evidence for mobilization of As under reducing conditions. Applied Geochemistry, 18, 1417–1434.

    Article  CAS  Google Scholar 

  • Stute, M., Zheng, Y., Schlosser, P., Horneman, A., Dhar, R., Datta, S., et al. (2007). Hydrological control of As concentrations in Bangladesh groundwater. Water Resources Research, 43, W09417.

    Article  CAS  Google Scholar 

  • Tabassum, R. A., Shahid, M., Dumat, C., Niazi, N. K., Khalid, S., Shah, N. S. et al. (2018). Health risk assessment of drinking arsenic-containing groundwater in Hasilpur, Pakistan: Effect of sampling area, depth, and source. Environmental Science and Pollution Research International. https://doi.org/10.1007/s11356-018-1276-z.

  • Thakur, J. K., Thakur, R. K., Ramanathan, A., Kumar, M., & Singh, S. K. (2010). Arsenic contamination of groundwater in Nepal: An overview. Water, 3, 1–20.

    Article  CAS  Google Scholar 

  • Thirunavukkarasu, O., Viraraghavan, T., & Subramanian, K. (2003). Arsenic removal from drinking water using granular ferric hydroxide. Water Sa, 29, 161–170.

    Article  CAS  Google Scholar 

  • Thundiyil, J. G., Yuan, Y., Smith, A. H., & Steinmaus, C. (2007). Seasonal variation of arsenic concentration in wells in Nevada. Environmental Research, 104, 367–373.

    Article  CAS  Google Scholar 

  • Tournassat, C., Charlet, L., Bosbach, D., & Manceau, A. (2002). Arsenic(III) oxidation by birnessite and precipitation of manganese(II) arsenate. Environmental Science and Technology, 36, 493–500.

    Article  CAS  Google Scholar 

  • Tsuji, J. S., Perez, V., Garry, M. R., & Alexander, D. D. (2014). Association of low-level arsenic exposure in drinking water with cardiovascular disease: A systematic review and risk assessment. Toxicology, 323, 78–94.

    Article  CAS  Google Scholar 

  • Ullah, R., Malik, R. N., & Qadir, A. (2009). Assessment of groundwater contamination in an industrial city, Sialkot, Pakistan. African Journal of Environmental Science and Technology, 3, 429.

    CAS  Google Scholar 

  • US Department of Health and Human Services. (2000). Toxicological profile for arsenic.

  • Violante, A., Ricciardella, M., Del Gaudio, S., & Pigna, M. (2006). Coprecipitation of arsenate with metal oxides: Nature, mineralogy, and reactivity of aluminum precipitates. Environmental Science and Technology, 40, 4961–4967.

    Article  CAS  Google Scholar 

  • Wade, T. J., Xia, Y., Wu, K., Li, Y., Ning, Z., Le, X. C., et al. (2009). Increased mortality associated with well-water arsenic exposure in Inner Mongolia, China. International Journal of Environmental Research and Public Health, 6, 1107–1123.

    Article  CAS  Google Scholar 

  • Wang, L., Condit, W. E., & Chen, A. S. (2004). Technology selection and system design US EPA arsenic removal technology demonstration program round 1. Washington: National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency.

    Google Scholar 

  • Welch, A. H., Westjohn, D., Helsel, D. R., & Wanty, R. B. (2000a). Arsenic in ground water of the United States: Occurrence and geochemistry. Groundwater, 38, 589–604.

    Article  CAS  Google Scholar 

  • Welch, A. H., Westjohn, D., Helsel, D. R., & Wanty, R. B. (2000b). Arsenic in ground water of the United States: Occurrence and geochemistry. Ground Water, 38, 589–604.

    Article  CAS  Google Scholar 

  • Wolf, R. (1974). Occupational arsenic lesions in vintagers. Berufs-Dermatosen, 22, 34.

    CAS  Google Scholar 

  • Xie, X., Wang, Y., Su, C., Li, J., & Li, M. (2012). Influence of irrigation practices on arsenic mobilization: Evidence from isotope composition and Cl/Br ratios in groundwater from Datong Basin, northern China. Journal of Hydrology, 424, 37–47.

    Article  CAS  Google Scholar 

  • Xie, X., Wang, Y., Su, C., Liu, H., Duan, M., & Xie, Z. (2008). Arsenic mobilization in shallow aquifers of Datong Basin: Hydrochemical and mineralogical evidences. Journal of Geochemical Exploration, 98, 107–115.

    Article  CAS  Google Scholar 

  • Yadav, I. C., Devi, N. L., Mohan, D., Shihua, Q., & Singh, S. (2014). Assessment of groundwater quality with special reference to arsenic in Nawalparasi district, Nepal using multivariate statistical techniques. Environmental Earth Sciences, 72, 259–273.

    Article  CAS  Google Scholar 

  • Zheng, Y., Stute, M., Van Geen, A., Gavrieli, I., Dhar, R., Simpson, H., et al. (2004). Redox control of arsenic mobilization in Bangladesh groundwater. Applied Geochemistry, 19, 201–214.

    Article  CAS  Google Scholar 

  • Zhu, G., Li, Z., Su, Y., Ma, J., & Zhang, Y. (2007). Hydrogeochemical and isotope evidence of groundwater evolution and recharge in Minqin Basin, Northwest China. Journal of Hydrology, 333, 239–251.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to University of Chinese Academy of Sciences for providing scholarship to Waqar Ali, Muhammad Junaid, and Atta Rasool. This work is supported by the National Key R&D Program of China (No. 2017YFD0800302) and the Natural Science Foundation of China (4157312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Major Arsenic-bearing minerals occurring in nature (Mandal and Suzuki 2002). Table S2 shows selective redox-sensitive compounds to identify redox condition.Table S3 Chronic Effects of Arsenic on Human Health (Barringer and Reilly 2013). Figure S1 Pakistan regions that are facing arsenic contamination in groundwater under various redox conditions comparison bivariate plots of Arsenic versus pH, EC (μS/cm), SO42− (mg/L), NO3 (mg/L), HCO3 (mg/L) and Mn (mg/L) (DOCX 260 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, W., Rasool, A., Junaid, M. et al. A comprehensive review on current status, mechanism, and possible sources of arsenic contamination in groundwater: a global perspective with prominence of Pakistan scenario. Environ Geochem Health 41, 737–760 (2019). https://doi.org/10.1007/s10653-018-0169-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0169-x

Keywords

Navigation