Skip to main content
Log in

Core–shell nanostructures: a simplest two-component system with enhanced properties and multiple applications

  • Review Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

With the pace of time, synthesis of nanomaterials has paved paths to blend two or more materials having different properties into hybrid nanoparticles. Therefore, it has become possible to combine two different functionalities in a single nanoparticle and their properties can be enhanced or modified by coupling of two different components. Core–shell technology has now represented a new trend in analytical sciences. Core–shell nanostructures are in demand due to their specific design and geometry. They have internal core of one component (metal or biomolecules) surrounded by a shell of another component. Core–shell nanoparticles have great importance due to their high thermal stability, high solubility and lower toxicity. In this review, recent progress in development of new and sophisticated core–shell nanostructures has been explored. The first section covers introduction throwing light on basics of core–shell nanoparticles. Following section classifies core–shell nanostructures into single core/shell, multicore/single shell, single core/multishell and multicore/multishell nanostructures. Next main section gives a brief description on types of core–shell nanomaterials followed by processes for the synthesis of core–shell nanostructures. Ultimately, the final section focuses on the application areas such as drug delivery, bioimaging, solar cell applications etc.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ahmad, R., Griffete, N., Lamouri, A., Felidj, N., Chehimi, M. M., & Mangeney, C. (2015). Nanocomposites of gold nanoparticles@ molecularly imprinted polymers: Chemistry, processing, and applications in sensors. Chemistry of Materials, 27(16), 5464–5478.

    Article  CAS  Google Scholar 

  • Ahmed, N. M. (2008). Modified zinc oxide-phosphate core-shell pigments in solvent-based paints. Anti-Corrosion Methods and Materials, 55(6), 333–340. https://doi.org/10.1108/00035590810913132.

    Article  CAS  Google Scholar 

  • Alejandro-Arellano, M., Ung, T., Blanco, Á., Mulvaney, P., & Liz-Marzán, L. M. (2000). Silica-coated metals and semiconductors. Stabilization and nanostructuring. Pure and applied chemistry, 72(1–2), 257–267.

    Article  CAS  Google Scholar 

  • Allen, A. E., & MacMillan, D. W. (2012). Synergistic catalysis: A powerful synthetic strategy for new reaction development. Chemical science, 3(3), 633–658.

    Article  CAS  Google Scholar 

  • Bao, G., Mitragotri, S., & Tong, S. (2013). Multifunctional nanoparticles for drug delivery and molecular imaging. Annual Review of Biomedical Engineering, 15, 253–282.

    Article  CAS  Google Scholar 

  • Bao, Z., Liu, X., Liu, Y., Liu, H., & Zhao, K. (2016). Near-infrared lightresponsive inorganic nanomaterials for photothermal therapy. Asian Journal of Pharmaceutical Sciences, 11, 349–364.

    Article  Google Scholar 

  • Barua, S., Yoo, J. W., Kolhar, P., Wakankar, A., Gokarn, Y. R., & Mitragotri, S. (2013). Particle shape enhances specificity of antibody-displaying nanoparticles. Proceedings of the National Academy of Sciences, 110(9), 3270–3275.

    Article  CAS  Google Scholar 

  • Benelmekki, M., Bohra, M., Kim, J. H., Diaz, R. E., Vernieres, J., Grammatikopoulos, P., & Sowwan, M. (2014). A facile single-step synthesis of ternary multicore magneto-plasmonic nanoparticles. Nanoscale, 6(7), 3532–3535.

    Article  CAS  Google Scholar 

  • Berry, C. C., & Curtis, A. S. (2003). Functionalisation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics, 36(13), 198.

    Article  Google Scholar 

  • Buonsanti, R., Grillo, V., Carlino, E., Giannini, C., Curri, M. L., Innocenti, C., & Cozzoli, P. D. (2006). Seeded growth of asymmetric binary nanocrystals made of a semiconductor TiO2 rodlike section and a magnetic γ-Fe2O3 spherical domain. Journal of the American Chemical Society, 128(51), 16953–16970.

    Article  CAS  Google Scholar 

  • Camargo, P. H., Xiong, Y., Ji, L., Zuo, J. M., & Xia, Y. (2007). Facile synthesis of tadpole-like nanostructures consisting of Au heads and Pd tails. Journal of the American Chemical Society, 129(50), 15452–15453.

    Article  CAS  Google Scholar 

  • Caruso, F. (2001). Nanoengineering of particle surfaces. Advanced materials, 13(1), 11–22.

    Article  CAS  Google Scholar 

  • Chatterjee, K., Sarkar, S., Rao, K. J., & Paria, S. (2014). Core/shell nanoparticles in biomedical applications. Advances in colloid and interface science, 209, 8–39.

    Article  CAS  Google Scholar 

  • Chava, R. K. (2019). Hydrogen gas-sensing application of Au@ In2O3 core-shell hybrid nanoparticles. In S. Mohapatra, T. A. Nguyen, & P. Nguyen-Tri (Eds.), Noble metal-metal oxide hybrid nanoparticles (pp. 499–516). Cambridge: Woodhead Publishing.

    Chapter  Google Scholar 

  • Chen, D., Xia, X., Gu, H., Xu, Q., Ge, J., Li, Y., & Lu, J. (2011). PH-responsive polymeric carrier encapsulated magnetic nanoparticles for cancer targeted imaging and delivery. Journal of Materials Chemistry, 21(34), 12682–12690.

    Article  CAS  Google Scholar 

  • Chen, L., Xu, S., & Li, J. (2011). Recent advances in molecular imprinting technology: Current status, challenges and highlighted applications. Chemical Society Reviews, 40(5), 2922–2942.

    Article  CAS  Google Scholar 

  • Cheng, Y., Doane, T. L., Chuang, C. H., Ziady, A., & Burda, C. (2014). Near infrared light-triggered drug generation and release from gold nanoparticle carriers for photodynamic therapy. Small, 10, 1799–1804.

    Article  CAS  Google Scholar 

  • Cushing, S. K., Li, J., Bright, J., Yost, B. T., Zheng, P., Bristow, A. D., & Wu, N. (2015). Controlling plasmon-induced resonance energy transfer and hot electron injection processes in Metal@ TiO2 core–shell nanoparticles. The Journal of Physical Chemistry C, 119(28), 16239–16244.

    Article  CAS  Google Scholar 

  • de Mello Donega, C. (2011). Synthesis and properties of colloidal heteronanocrystals. Chemical Society Reviews, 40(3), 1512–1546.

    Article  Google Scholar 

  • Deng, Z., Zhen, Z., Hu, X., Wu, S., Xu, Z., & Chu, P. K. (2011). Hollow chitosan−silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials, 32, 4976–4986.

    Article  CAS  Google Scholar 

  • Derfus, A. M., von Maltzahn, G., Harris, T. J., Duza, T., Vecchio, K. S., Ruoslahti, E., & Bhatia, S. N. (2007). Remotely triggered release from magnetic nanoparticles. Advanced Materials, 19, 3932–3936.

    Article  CAS  Google Scholar 

  • Deshpande, S., Sharma, S., Koul, V., & Singh, N. (2017). Core-shell nanoparticles as an efficient, sustained, and triggered drug-delivery system. ACS omega, 2(10), 6455–6463.

    Article  CAS  Google Scholar 

  • Di Corato, R., Bigall, N. C., Ragusa, A., Dorfs, D., Genovese, A., Marotta, R., & Pellegrino, T. (2011). Multifunctional nanobeads based on quantum dots and magnetic nanoparticles: Synthesis and cancer cell targeting and sorting. ACS Nano, 5(2), 1109–1121.

    Article  CAS  Google Scholar 

  • Ding, X., Zhao, J., Liu, Y., Zhang, H., & Wang, Z. (2004). Silica nanoparticles encapsulated by polystyrene via surface grafting and in situ emulsion polymerization. Materials Letters, 58(25), 3126–3130.

    Article  CAS  Google Scholar 

  • Dionigi, C., Piñeiro, Y., Riminucci, A., Bañobre, M., Rivas, J., & Dediu, V. (2014). Regulating the thermal response of PNIPAM hydrogels by controlling the adsorption of magnetite nanoparticles. Applied Physics A, 114, 585–590.

    Article  CAS  Google Scholar 

  • Gao, Q., Chen, F., Zhang, J., Hong, G., Ni, J., Wei, X., & Wang, D. (2009). The study of novel Fe3O4@ γ-Fe2O3 core/shell nanomaterials with improved properties. Journal of magnetism and magnetic materials, 321(8), 1052–1057.

    Article  CAS  Google Scholar 

  • Grossman, H. L., Myers, W. R., Vreeland, V. J., Bruehl, R., Alper, M. D., Bertozzi, C. R., & Clarke, J. (2004). Detection of bacteria in suspension by using a superconducting quantum interference device. Proceedings of the National Academy of Sciences, 101(1), 129–134.

    Article  CAS  Google Scholar 

  • Gu, H., Yang, Z., Gao, J., Chang, C. K., & Xu, B. (2005). Heterodimers of nanoparticles: Formation at a liquid− liquid interface and particle-specific surface modification by functional molecules. Journal of the American Chemical Society, 127(1), 34–35.

    Article  CAS  Google Scholar 

  • Gu, H., Zheng, R., Zhang, X., & Xu, B. (2004). Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: A conjugate of quantum dot and magnetic nanoparticles. Journal of the American Chemical Society, 126(18), 5664–5665.

    Article  CAS  Google Scholar 

  • Guerrero-Martınez, A., Perez-Juste, J., & Liz-Marzan, L. M. (2009). Recent progress on silica coating of nanoparticles and related nanomaterials. Advanced Material, 21, 1–14.

    Google Scholar 

  • Gustafsson, G., Cao, Y., Treacy, G. M., Klavetter, F., Colaneri, N., & Heeger, A. J. (1992). Flexible light-emitting diodes made from soluble conducting polymers. Nature, 357(6378), 477.

    Article  CAS  Google Scholar 

  • Gutierrez, A. M., Bhandari, R., Weng, J., Stromberg, A., Dziubla, T. D., & Hilt, J. Z. (2019). Novel magnetic core-shell nanoparticles for the removal of polychlorinated biphenyls from contaminated water sources. Materials Chemistry and Physics, 223, 68–74.

    Article  CAS  Google Scholar 

  • Haham, H., Natan, M., Gutman, O., Kolitz-Domb, M., Banin, E., & Margel, S. (2016). Engineering of superparamagnetic core–shell iron oxide/N-chloramine nanoparticles for water purification. ACS applied materials & interfaces, 8(28), 18488–18495.

    Article  CAS  Google Scholar 

  • Harpeness, R., & Gedanken, A. (2004). Microwave synthesis of core−shell gold/palladium bimetallic nanoparticles. Langmuir, 20(8), 3431–3434.

    Article  CAS  Google Scholar 

  • Henglein, A. (1989). Small-particle research: Physicochemical properties of extremely small colloidal metal and semiconductor particles. Chemical Reviews, 89, 1861–1873.

    Article  CAS  Google Scholar 

  • Hinds, K. A., Hill, J. M., Shapiro, E. M., Laukkanen, M. O., Silva, A. C., Combs, C. A., et al. (2003). Highly efficient endosomal labelling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood, 102(3), 867–872.

    Article  CAS  Google Scholar 

  • Hodak, J. H., Henglein, A., Giersig, M., & Hartland, G. V. (2000). Laser-induced inter-diffusion in AuAg core− shell nanoparticles. The Journal of Physical Chemistry B, 104(49), 11708–11718.

    Article  CAS  Google Scholar 

  • Hoener, C. F., Allan, K. A., Bard, A. J., Campion, A., Fox, M. A., Malluok, T. E., et al. (1992). Demonstration of a shell-core structure in layered cadmium selenide-zinc selenide small particles by Xray photoelectron and Auger spectroscopies. Journal of Physical Chemistry, 96, 3812–3817.

    Article  CAS  Google Scholar 

  • Holleman, A. F., & Wiberg, E. (2001). Inorganic chemistry. Berlin/New York: Academic Press.

    Google Scholar 

  • Hong, S., Acapulco, J. A., Jr., Jang, H. Y., & Park, S. (2014). Au nanodisk-core multishell nanoparticles: Synthetic method for controlling number of shells and intershell distance. Chemistry of Materials, 26(12), 3618–3623.

    Article  CAS  Google Scholar 

  • Hsu, J. C., Huang, C. C., Ou, K. L., Lu, N., Mai, F. D., Chen, J. K., & Chang, J. Y. (2011). Silica nanohybrids integrated with CuInS2/ZnS quantum dots and magnetite nanocrystals: Multifunctional agents for dual-modality imaging and drug delivery. Journal of Materials Chemistry, 21(48), 19257–19266.

    Article  CAS  Google Scholar 

  • Israelachvili, J. N., Mitchell, D. J., & Ninham, B. W. (1976). Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 72, 1525–1568.

    Article  CAS  Google Scholar 

  • Jankiewicz, B. J., Jamiola, D., Choma, J., & Jaroniec, M. (2012). Silica–metal core–shell nanostructures. Advances in colloid and interface science, 170(1–2), 28–47.

    Article  CAS  Google Scholar 

  • Jia, X., Li, H., Luo, J., Lu, Q., Peng, Y., Shi, L., et al. (2012). Rational design of core-shell molecularly imprinted polymer based on computational simulation and Doehlert experimental optimization: Application to the separation of tanshinone IIA from Salvia miltiorrhiza Bunge. Analytical and Bioanalytical Chemistry, 403(9), 2691–2703.

    Article  CAS  Google Scholar 

  • Jing, Y., Zhu, Y., Yang, X., Shen, J., & Li, C. (2011). Ultrasound-triggered smart drug release from multifunctional core− shell capsules one-step fabricated by coaxial electrospray method. Langmuir, 27(3), 1175–1180.

    Article  CAS  Google Scholar 

  • Kagan, C. R., Murray, C. B., & Bawendi, M. G. (1996). Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Physical Review B., 54(12), 8633.

    Article  CAS  Google Scholar 

  • Kalele, S., Gosavi, S. W., Urban, J., & Kulkarni, S. K. (2006). Nanoshell particles: Synthesis, properties and applications. Current science, 91, 1038–1052.

    CAS  Google Scholar 

  • Kamali, S., Bringas, E., Hah, H. Y., Bates, B., Johnson, J. A., Johnson, C. E., & Stroeve, P. (2018). Magnetism and Mössbauer study of formation of multi-core γ-Fe2O3 nanoparticles. Journal of Magnetism and Magnetic Materials, 451, 131–136.

    Article  CAS  Google Scholar 

  • Kamata, K., Lu, Y., & Xia, Y. (2003). Synthesis and characterization of monodispersed core− shell spherical colloids with movable cores. Journal of the American Chemical Society, 125(9), 2384–2385.

    Article  CAS  Google Scholar 

  • Kan, X., Zhao, Q., Shao, D., Geng, Z., Wang, Z., & Zhu, J. J. (2010). Preparation and recognition properties of bovine hemoglobin magnetic molecularly imprinted polymers. Journal of Physical Chemistry B, 114(11), 3999–4004.

    Article  CAS  Google Scholar 

  • Kanmani, S. S., & Ramachandran, K. (2012). Synthesis and characterization of TiO2/ZnO core/shell nanomaterials for solar cell applications. Renewable Energy, 43, 149–156.

    Article  CAS  Google Scholar 

  • Karamipour, S., Sadjadi, M. S., & Farhadyar, N. (2015). Fabrication and spectroscopic studies of folic acid-conjugated Fe3O4@ Au core–shell for targeted drug delivery application. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 148, 146–155.

    Article  CAS  Google Scholar 

  • Kim, B. S., Qiu, J. M., Wang, J. P., & Taton, T. A. (2005). Magnetomicelles: Composite nanostructures from magnetic nanoparticles and cross-linked amphiphilic block copolymers. Nano letters, 5(10), 1987–1991.

    Article  CAS  Google Scholar 

  • Kim, C. K., Ghosh, P., & Rotello, V. M. (2009). Multimodal drug delivery using gold nanoparticles. Nanoscale, 1(1), 61–67.

    Article  CAS  Google Scholar 

  • Kim, H., Achermann, M., Balet, L. P., Hollingsworth, J. A., & Klimov, V. I. (2005). Synthesis and characterization of Co/CdSe core/shell nanocomposites: Bifunctional magnetic-optical nanocrystals. Journal of the American Chemical Society, 127(2), 544–546.

    Article  CAS  Google Scholar 

  • Kim, J. Y., Yoon, S. B., Kooli, F., Lee, C. W., & Yu, J. S. (2003). Synthetic control of ordered and disordered arrays of carbon nanofibers from SBA-15 silica templates. Chemical Communications, 14, 1740–1741.

    Google Scholar 

  • Kulkarni, S. A., & Feng, S. S. (2013). Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharmaceutical research, 30(10), 2512–2522.

    Article  CAS  Google Scholar 

  • Lange, J., Kötitz, R., Haller, A., Trahms, L., Semmler, W., & Weitschies, W. (2002). Magnetorelaxometry—A new binding specific detection method based on magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 252, 381–383.

    Article  CAS  Google Scholar 

  • Lee, C. S., Chang, H. H., Bae, P. K., Jung, J., & Chung, B. H. (2013). Bifunctional nanoparticles constructed using one-pot encapsulation of a fluorescent polymer and magnetic (Fe3O4) nanoparticles in a silica shell. Macromolecular bioscience, 13(3), 321–331.

    Article  CAS  Google Scholar 

  • Lee, G. Y., Qian, W. P., Wang, L., Wang, Y. A., Staley, C. A., Satpathy, M., et al. (2013). Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano, 7(3), 2078–2089.

    Article  CAS  Google Scholar 

  • Li, J., Ji, C., Yang, W., & Yin, M. (2013). pH switchable and fluorescent ratiometric squarylium indocyanine dyes as extremely alkaline solution sensors. Analyst, 138(24), 7289–7293.

    Article  CAS  Google Scholar 

  • Li, J., Guo, K., Shen, J., Yang, W., & Yin, M. (2014). A difunctional squarylium indocyanine dye distinguishes dead cells through diverse staining of the cell nuclei/membranes. Small, 10(7), 1351–1360.

    Article  CAS  Google Scholar 

  • Link, S., Wang, Z. L., & El-Sayed, M. A. (1999). Alloy formation of gold− silver nanoparticles and the dependence of the plasmon absorption on their composition. The Journal of Physical Chemistry B, 103(18), 3529–3533.

    Article  CAS  Google Scholar 

  • Liu, F. K., Huang, P. W., Chang, Y. C., Ko, F. H., & Chu, T. C. (2005). Combining optical lithography with rapid microwave heating for the selective growth of Au/Ag bimetallic core/shell structures on patterned silicon wafers. Langmuir, 21(6), 2519–2525.

    Article  CAS  Google Scholar 

  • Liu, J., Cheng, J., Che, R., Xu, J., Liu, M., & Liu, Z. (2012). Double-shelled yolk–shell microspheres with Fe3O4 cores and SnO2 double shells as high-performance microwave absorbers. The Journal of Physical Chemistry C, 117(1), 489–495.

    Article  CAS  Google Scholar 

  • Liu, J., Qiao, S. Z., Budi Hartono, S., & Lu, G. Q. (2010). Monodisperse yolk–shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angewandte Chemie International Edition, 49(29), 4981–4985.

    Article  CAS  Google Scholar 

  • Liu, J., Xu, J., Che, R., Chen, H., Liu, M., & Liu, Z. (2013). Hierarchical Fe3O4@ TiO2 yolk–shell microspheres with enhanced microwave-absorption properties. Chemistry A European Journal, 19(21), 6746–52.

    Article  CAS  Google Scholar 

  • Liu, R., Guo, Y., Odusote, G., Qu, F., & Priestley, R. D. (2013). Core–shell Fe3O4 polydopamine nanoparticles serve multipurpose as drug carrier, catalyst support and carbon adsorbent. ACS applied materials & interfaces, 5(18), 9167–9171.

    Article  CAS  Google Scholar 

  • Liu, S., Jiang, R., You, P., Zhu, X., Wang, J., & Yan, F. (2016). Au/Ag core–shell nanocuboids for high-efficiency organic solar cells with broadband plasmonic enhancement. Energy & Environmental Science, 9(3), 898–905.

    Article  CAS  Google Scholar 

  • Liu, W., Kumar, J., Tripathy, S., Senecal, K. J., & Samuelson, L. (1999). Enzymatically synthesized conducting polyaniline. Journal of the American Chemical Society, 121(1), 71–78.

    Article  CAS  Google Scholar 

  • Liu, Y., Wang, M., Cao, L. J., Yang, M. Y., Cheng, S. H. S., Cao, C. W., et al. (2015). Interfacial redox reaction-directed synthesis of silver@ cerium oxide core–shell nanocomposites as catalysts for rechargeable lithium–air batteries. Journal of Power Sources, 286, 136–144.

    Article  CAS  Google Scholar 

  • Liz-Marzán, L. M., Giersig, M., & Mulvaney, P. (1996). Synthesis of nanosized gold− silica core− shell particles. Langmuir, 12(18), 4329–4335.

    Article  Google Scholar 

  • Liz-Marzan, L. M., Correa-Duarte, M. A., Pastoriza-Santos, I., Mulvaney, P., Ung, T., Giersig, M., et al. (2001). Core-shell nanoparticles and assemblies thereof. In H. S. Nalawa (Ed.), Hand book of surfaces and interfaces of materials. Amsterdam: Elsevier.

    Google Scholar 

  • Lopez-Ortega, A., Estrader, M., Salazar-Alvarez, G., Roca, A. G., & Nogues, J. (2015). Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Physics Reports, 553, 1–32.

    Article  CAS  Google Scholar 

  • Lu, F., Li, H., Sun, M., Fan, L., Qiu, H., Li, X., & Luo, C. (2012). Flow injection chemiluminescence sensor based on core-shell magnetic molecularly imprinted NPs for determination of sulfadiazine. Analytica Chimica Acta, 718, 84–91.

    Article  CAS  Google Scholar 

  • Lu, S., Tu, D., Li, X., Li, R., & Chen, X. (2016). A facile “ship-in-a-bottle” approach to construct nanorattles based on upconverting lanthanide-doped fluorides. Nano Research, 9(1), 187–197.

    Article  CAS  Google Scholar 

  • Lu, Y., Yin, Y., Li, Z. Y., & Xia, Y. (2002). Synthesis and self-assembly of Au@ SiO2 core− shell colloids. Nano Letters, 2(7), 785–788.

    Article  CAS  Google Scholar 

  • Lu, Y., Yin, Y., Mayers, B. T., & Xia, Y. (2002). Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol− gel approach. Nano letters, 2(3), 183–186.

    Article  CAS  Google Scholar 

  • Lyubutin, I. S., Lin, C. R., Tseng, Y. T., Spivakov, A., Baskakov, A. O., Starchikov, S. S., et al. (2019). Structural and magnetic evolution of FexOy@ carbon core-shell nanoparticles synthesized by a one-step thermal pyrolysis. Materials Characterization, 150, 213–219.

    Article  CAS  Google Scholar 

  • Maillard, F., Savinova, E. R., & Stimming, U. (2007). CO monolayer oxidation on Pt nanoparticles: Further insights into the particle size effects. Journal of Electroanalytical Chemistry, 599(2), 221–232.

    Article  CAS  Google Scholar 

  • Matijević, E. (1989). Fine particles: Science and technology. MRS bulletin, 14(12), 18–22.

    Article  Google Scholar 

  • Mayya, K. S., Gittins, D. I., & Caruso, F. (2001). Gold− titania core− shell nanoparticles by polyelectrolyte complexation with a titania precursor. Chemistry of materials, 13(11), 3833–3836.

    Article  CAS  Google Scholar 

  • Milliron, D. J., Hughes, S. M., Cui, Y., Manna, L., Li, J., Wang, L. W., & Alivisatos, A. P. (2004). Colloidal nanocrystal heterostructures with linear and branched topology. Nature, 430(6996), 190.

    Article  CAS  Google Scholar 

  • Min, K. H., Kim, J. H., Bae, S. M., Shin, H., Kim, M. S., Park, S., et al. (2010). Tumoral acidic pH-responsive MPEG-poly(β-amino ester) polymeric micelles for cancer targeting therapy. Journal of Controlled Release, 144, 259–266.

    Article  CAS  Google Scholar 

  • Mizukoshi, Y., Fujimoto, T., Nagata, Y., Oshima, R., & Maeda, Y. (2000). Characterization and catalytic activity of core− shell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method. The Journal of Physical Chemistry B, 104(25), 6028–6032.

    Article  CAS  Google Scholar 

  • Molina, M., Giulbudagian, M., & Calderon, M. (2014). Positively charged thermoresponsive nanogels for anticancer drug delivery. Macromolecular Chemistry and Physics, 215, 2414–2419.

    Article  CAS  Google Scholar 

  • Muhammad, F., Guo, M., Qi, W., Sun, F., Wang, A., Guo, Y., & Zhu, G. (2011). pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. Journal of American Chemical Society, 133, 8778–8781.

    Article  CAS  Google Scholar 

  • Muñoz-Fernandez, L., Alkan, G., Milošević, O., Rabanal, M. E., & Friedrich, B. (2019). Synthesis and characterisation of spherical core-shell Ag/ZnO nanocomposites using single and two–steps ultrasonic spray pyrolysis (USP). Catalysis Today, 321, 26–33.

    Article  CAS  Google Scholar 

  • Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12, 991–1003.

    Article  CAS  Google Scholar 

  • Muzikansky, A., Nanikashvili, P., Grinblat, J., & Zitoun, D. (2013). Ag dewetting in Cu@ Ag monodisperse core–shell nanoparticles. The Journal of Physical Chemistry C, 117(6), 3093–3100.

    Article  CAS  Google Scholar 

  • Nagao, D., Yokoyama, M., Yamauchi, N., Matsumoto, H., Kobayashi, Y., & Konno, M. (2008). Synthesis of highly monodisperse particles composed of a magnetic core and fluorescent shell. Langmuir, 24(17), 9804–9808.

    Article  CAS  Google Scholar 

  • Nematollahzadeh, A., Seraj, S., & Mirzayi, B. (2015). Catecholamine coated maghemite nanoparticles for the environmental remediation: Hexavalent chromium ions removal. Chemical Engineering Journal, 277, 21–29.

    Article  CAS  Google Scholar 

  • Niu, M., Pham-Huy, C., & He, H. (2016). Core-shell nanoparticles coated with molecularly imprinted polymers: A review. Microchimica Acta, 183(10), 2677–2695.

    Article  CAS  Google Scholar 

  • O’Connor, C. J., Sims, J. A., Kumbhar, A., Kolesnichenko, V. L., Zhou, W. L., & Wiemann, J. A. (2001). Magnetic properties of FePtx/Au and CoPtx/Au core-shell nanoparticles. Journal of magnetism and magnetic materials, 226, 1915–1917.

    Article  Google Scholar 

  • Pacholski, C., Kornowski, A., & Weller, H. (2004). Site-specific photodeposition of silver on ZnO nanorods. Angewandte Chemie International Edition, 43(36), 4774–4777.

    Article  CAS  Google Scholar 

  • Pan, C., Dassenoy, F., Casanove, M. J., Philippot, K., Amiens, C., Lecante, P., et al. (1999). A new synthetic method toward bimetallic ruthenium platinum nanoparticles; composition induced structural changes. The Journal of Physical Chemistry B, 103(46), 10098–10101.

    Article  CAS  Google Scholar 

  • Park, J. W., Park, Y. J., & Jun, C. H. (2011). Post-grafting of silica surfaces with pre-functionalized organosilanes: New synthetic equivalents of conventional trialkoxysilanes. Chemical Communications, 47(17), 4860–4871.

    Article  CAS  Google Scholar 

  • Park, J., Joo, J., Kwon, S. G., Jang, Y., & Hyeon, T. (2007). Synthesis of monodisperse spherical nanocrystals. Angewandte Chemie International Edition, 46(25), 4630–4660.

    Article  CAS  Google Scholar 

  • Park, J. I., & Cheon, J. (2001). Synthesis of “solid solution” and “core-shell” type cobalt− platinum magnetic nanoparticles via transmetalation reactions. Journal of the American Chemical Society, 123(24), 5743–5746.

    Article  CAS  Google Scholar 

  • Parsina, I., & Baletto, F. (2010). Tailoring the structural motif of AgCo nanoalloys: Core/shell versus Janus-like. Journal of Physical Chemistry C, 114, 1504–1511.

    Article  CAS  Google Scholar 

  • Parsina, I., DiPaola, C., & Baletto, F. (2012). A novel structural motif for free CoPt nanoalloys. Nanoscale, 4(4), 1160–1166.

    Article  CAS  Google Scholar 

  • Patolsky, F., Weizmann, Y., Katz, E., & Willner, I. (2003). Magnetically amplified DNA assays (MADA): Sensing of viral DNA and single-base mismatches by using nucleic acid modified magnetic particles. Angewandte Chemie International Edition, 42(21), 2372–2376.

    Article  CAS  Google Scholar 

  • Pellegrino, T., Fiore, A., Carlino, E., Giannini, C., Cozzoli, P. D., Ciccarella, G., et al. (2006). Heterodimers based on CoPt3− Au nanocrystals with tunable domain size. Journal of the American Chemical Society, 128(20), 6690–6698.

    Article  CAS  Google Scholar 

  • Peng, H., Qi, W., Li, S., & Ji, W. (2015). Modeling the phase stability of Janus, core–shell, and alloyed Ag–Cu and Ag–Au nanoparticles. The Journal of Physical Chemistry C, 119(4), 2186–2195.

    Article  CAS  Google Scholar 

  • Perez, R. A., & Kim, H. W. (2015). Core–shell designed scaffolds for drug delivery and tissue engineering. Acta biomaterialia, 15, 21.

    Google Scholar 

  • Piao, Y., Burns, A., Kim, J., Wiesner, U., & Hyeon, T. (2008). Designed fabrication of silica-based nanostructured particle systems for nanomedicine applications. Advanced Functional Materials, 18(23), 3745–3758.

    Article  CAS  Google Scholar 

  • Pichon, B. P., Gerber, O., Lefevre, C., Florea, I., Fleutot, S., Baaziz, W., & Pierron-Bohnes, V. (2011). Microstructural and magnetic investigations of wustite-spinel core-shell cubic-shaped nanoparticles. Chemistry of Materials, 23(11), 2886–2900.

    Article  CAS  Google Scholar 

  • Portales, H., Saviot, L., Duval, E., Gaudry, M., Cottancin, E., Pellarin, M., & Broyer, M. (2002). Resonant Raman scattering by quadrupolar vibrations of Ni-Ag core-shell nanoparticles. Physical Review B, 65(16), 165422.

    Article  CAS  Google Scholar 

  • Prasad, P. N. (2003). Introduction to biophotonics (p. 255360). New York: Wiley-Interscience.

    Book  Google Scholar 

  • Prasad, P. N. (2012). Introduction to nanomedicine and nanobioengineering (p. 171180). New Jersey: Wiley-Interscience.

    Google Scholar 

  • Pujari, S. P., Scheres, L., Marcelis, A. T., & Zuilhof, H. (2014). Covalent surface modification of oxide surfaces. Angewandte Chemie International Edition, 53(25), 6322–6356.

    Article  CAS  Google Scholar 

  • Qiao, Z. A., Huo, Q., Chi, M., Veith, G. M., Binder, A. J., & Dai, S. (2012). A “Ship-In-A-Bottle” approach to synthesis of polymer dots@ silica or polymer dots@ carbon core-shell nanospheres. Advanced materials, 24(45), 6017–6021.

    Article  CAS  Google Scholar 

  • Ghosh Chaudhuri, R., & Paria, S. (2012). Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chemical Reviews, 112(4), 2373–2433.

    Article  CAS  Google Scholar 

  • Hao, R., Xing, R., Xu, Z., Hou, Y., Gao, S., & Sun, S. (2010). Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Advanced Materials, 22, 2729–2742.

    Article  CAS  Google Scholar 

  • Radloff, C., & Halas, N. J. (2004). Plasmonic properties of concentric nanoshells. Nano Letters, 4, 1323–1327.

    Article  CAS  Google Scholar 

  • Rajendrakumar, S., Uthaman, S., Cho, C., & Park, I.-K. (2017). Trigger responsive gene transporters for anticancer therapy. Nanomaterials, 7, 120.

    Article  CAS  Google Scholar 

  • Rastogi, R., Gulati, N., Kotnala, R. K., Sharma, U., Jayasundar, R., & Koul, V. (2011). Evaluation of folate conjugated pegylated thermosensitive magnetic nanocomposites for tumor imaging and therapy. Colloids Surf B, 82, 160–167.

    Article  CAS  Google Scholar 

  • Ravel, B., Carpenter, E. E., & Harris, V. G. (2002). Oxidation of iron in iron/gold core/shell nanoparticles. Journal of Applied Physics, 91(10), 8195–8197.

    Article  CAS  Google Scholar 

  • Reiss, P., Protiere, M., & Li, L. (2009). Core/shell semiconductor nanocrystals. small, 5(2), 154–168.

    Article  CAS  Google Scholar 

  • Robinson, R. D., Sadtler, B., Demchenko, D. O., Erdonmez, C. K., Wang, L. W., & Alivisatos, A. P. (2007). Spontaneous superlattice formation in nanorods through partial cation exchange. Science, 317(5836), 355–358.

    Article  CAS  Google Scholar 

  • Rocha, N., Mendes, J., Durães, L., Maleki, H., Portugal, A., Geraldes, C. F., & Coelho, J. (2014). Poly (ethylene glycol)-block-poly (4-vinyl pyridine) as a versatile block copolymer to prepare nanoaggregates of superparamagnetic iron oxide nanoparticles. Journal of Materials Chemistry B, 2(11), 1565–1575.

    Article  CAS  Google Scholar 

  • Rodríguez-González, B., Burrows, A., Watanabe, M., Kiely, C. J., & Marzán, L. M. L. (2005). Multishell bimetallic AuAg nanoparticles: Synthesis, structure and optical properties. Journal of Materials Chemistry, 15(17), 1755–1759.

    Article  CAS  Google Scholar 

  • Scott, R. W., Wilson, O. M., & Crooks, R. M. (2005). Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. Journal of Physical Chemistry. B, 109, 692.

    Article  CAS  Google Scholar 

  • Serpell, C. J., Cookson, J., Ozkaya, D., & Beer, P. D. (2011). Core@ shell bimetallic nanoparticle synthesis via anion coordination. Nature chemistry, 3(6), 478.

    Article  CAS  Google Scholar 

  • Shen, J., Li, Y., Zhu, Y., Yang, X., Yao, X., Li, J., Huang, G., et al. (2015). Multifunctional gadolinium-labeled silica-coated Fe3O4 and CuInS2 nanoparticles as a platform for in vivo tri-modality magnetic resonance and fluorescence imaging. Journal of Materials Chemistry B, 3(14), 2873–2882.

    Article  CAS  Google Scholar 

  • Shen, J., Li, Y., Zhu, Y., Yang, X., Yao, X., Li, J., & Li, C. (2015). Multifunctional gadolinium-labeled silica-coated Fe3O4 and CuInS2 nanoparticles as a platform for in vivo tri-modality magnetic resonance and fluorescence imaging. Journal of Materials Chemistry B, 3(14), 2873–2882.

    Article  CAS  Google Scholar 

  • Shevchenko, E. V., Bodnarchuk, M. I., Kovalenko, M. V., Talapin, D. V., Smith, R. K., Aloni, S., et al. (2008). Gold/iron oxide core/hollow-shell nanoparticles. Advanced Materials, 20(22), 4323–4329.

    Article  CAS  Google Scholar 

  • Shi, W., Zeng, H., Sahoo, Y., Ohulchanskyy, T. Y., Ding, Y., Wang, Z. L., & Prasad, P. N. (2006). A general approach to binary and ternary hybrid nanocrystals. Nano letters, 6(4), 875–881.

    Article  CAS  Google Scholar 

  • Shin, Y., Chang, J. H., Liu, J., Williford, R., Shin, Y. K., & Exarhos, G. J. (2001). Hybrid nanogels for sustainable positive thermosensitive drug release. Journal of Controlled Release, 73, 1–6.

    Article  CAS  Google Scholar 

  • Shiomi, T., Matsui, M., Mizukami, F., & Sakaguchi, K. (2005). A method for the molecular imprinting of hemoglobin on silica surfaces using silanes. Biomaterials, 26(27), 5564–5571.

    Article  CAS  Google Scholar 

  • Silvert, P. Y., Vijayakrishnan, V., Vibert, P., Herrera-Urbina, R., & Elhsissen, K. T. (1996). Synthesis and characterization of nanoscale Ag-Pd alloy particles. Nanostructured Materials, 7, 611–618.

    Article  CAS  Google Scholar 

  • Sobal, N. S., Hilgendorff, M., Mohwald, H., Giersig, M., Spasova, M., Radetic, T., & Farle, M. (2002). Synthesis and structure of colloidal bimetallic nanocrystals: The non-alloying system Ag/Co. Nano Letters, 2, 621–624.

    Article  CAS  Google Scholar 

  • Song, H. T., Choi, J. S., Huh, Y. M., Kim, S., Jun, Y. W., Suh, J. S., & Cheon, J. (2005). Surface modulation of magnetic nanocrystals in the development of highly efficient magnetic resonance probes for intracellular labeling. Journal of the American Chemical Society, 127(28), 9992–9993.

    Article  CAS  Google Scholar 

  • Spanhel, L., Weller, H., & Henglein, A. (1987). Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles. Journal of the American Chemical Society, 109(22), 6632–5.

    Article  CAS  Google Scholar 

  • Srdić, V. V., Mojić, B., Nikolić, M., & Ognjanović, S. (2013). Recent progress on synthesis of ceramics core/shell nanostructures. Matrix, 13, 14.

    Google Scholar 

  • Stopić, S., & Friedrich, B. (2018). Synthesis of nanosized metallic and core-shell particles by ultrasonic spray pyrolysis. Contemporary materials, 2(8), 111–120.

    Google Scholar 

  • Subbiah, R., & Guldberg, R. E. (2019). Materials science and design principles of growth factor delivery systems in tissue engineering and regenerative medicine. Advanced Healthcare Materials, 8(1), 1801000.

    Article  CAS  Google Scholar 

  • Subramanian, V., Wolf, E. E., & Kamat, P. V. (2004). Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration. Journal of the American Chemical Society, 126(15), 4943–4950.

    Article  CAS  Google Scholar 

  • Sun, L., Wu, W., Yang, S., Zhou, J., Hong, M., Xiao, X., et al. (2014). Template and silica interlayer tailorable synthesis of spindle-like multilayer α-Fe2O3/Ag/SnO2 ternary hybrid architectures and their enhanced photocatalytic activity. ACS applied materials & interfaces, 6(2), 1113–1124.

    Article  CAS  Google Scholar 

  • Sun, H., Wang, L., Chu, D., Ma, Z., & Wang, A. (2015). Synthesis of porous Cr2O3 hollow microspheres via a facile template-free approach. Materials Letters, 140, 35–38.

    Article  CAS  Google Scholar 

  • Sun, T., Chen, X., Jin, L., Li, H. W., Chen, B., Fan, B., & Yu, S. F. (2017). Broadband Ce (III)-sensitized quantum cutting in core-shell nanoparticles: Mechanistic investigation and photovoltaic application. The journal of physical chemistry letters, 8(20), 5099–5104.

    Article  CAS  Google Scholar 

  • Talapin, D. V., Heng, Y., Elena, V. S., et al. (2007). Synthesis of Colloidal PbSe/PbS Core-Shell Nanowires and PbS/Au Nanowire-Nanocrystal Heterostuctures. Physical Chemistry C, 111(38), 14–049.

    Article  CAS  Google Scholar 

  • Tamarov, K. P., Osminkina, L. A., Zinovyev, S. V., Maximova, K. A., Kargina, J. V., Gongalsky, M. B., et al. (2014). Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy. Scientific Reports, 4(1), 1–7.

    Google Scholar 

  • Tenório-Neto, E. T., Baraket, A., Kabbaj, D., Zine, N., Errachid, A., Fessi, H., et al. (2016). Submicron magnetic core conducting polypyrrole polymer shell: Preparation and characterization. Materials Science and Engineering: C, 61, 688–694.

    Article  CAS  Google Scholar 

  • Thambi, T., Deepagan, V. G., Yoon, H. Y., Han, H. S., Kim, S. H., Son, S., et al. (2014). Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery. Biomaterials, 35, 1735–1743.

    Article  CAS  Google Scholar 

  • Tian, Y., Wu, D., Jia, X., Yu, B., Zhan, S. (2011). Core-Shell Nanostructure of Synthesis and Photocatalysis for Methyl Orange. Journal of Nanomaterials2011.

  • Tsuji, M., Miyamae, N., Lim, S., Kimura, K., Zhang, X., Hikino, S., & Nishio, M. (2006). Crystal structures and growth mechanisms of Au@ Ag core− shell nanoparticles prepared by the microwave− polyol method. Crystal growth & design, 6(8), 1801–1807.

    Article  CAS  Google Scholar 

  • Ung, T., Liz-Marzán, L. M., & Mulvaney, P. (1998). Controlled method for silica coating of silver colloids. Influence of coating on the rate of chemical reactions. Langmuir, 14(14), 3740–3748.

    Article  CAS  Google Scholar 

  • Urban, J. J., Talapin, D. V., Shevchenko, E. V., Kagan, C. R., & Murray, C. B. (2007). Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag 2 Te thin films. Nature materials, 6(2), 115.

    Article  CAS  Google Scholar 

  • Uzuriaga-Sanchez, R. J., Khan, S., Wong, A., Picasso, G., Pividori, M. I., & Sotomayor, M. D. T. (2016). Magnetically separable polymer (magMIP) for selective analysis of biotin in food samples. Food Chemistry, 190, 460–467.

    Article  CAS  Google Scholar 

  • Veiseh, O., Sun, C., Gunn, J., Kohler, N., Gabikian, P., Lee, D., et al. (2005). Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano letters, 5(6), 1003–1008.

    Article  CAS  Google Scholar 

  • Velikov, K. P., & van Blaaderen, A. (2001). Synthesis and characterization of monodisperse core− shell colloidal spheres of zinc sulfide and silica. Langmuir, 17(16), 4779–4786.

    Article  CAS  Google Scholar 

  • Von Werne, T., & Patten, T. E. (1999). Preparation of structurally well-defined polymer− nanoparticle hybrids with controlled/living radical polymerizations. Journal of the American Chemical Society, 121(32), 7409–7410.

    Article  CAS  Google Scholar 

  • Wang, C., Xu, C., Zeng, H., & Sun, S. (2009). Recent progress in syntheses and applications of dumbbell-like nanoparticles. Advanced materials, 21(30), 3045–3052.

    Article  CAS  Google Scholar 

  • Wang, F., Sun, L. D., Feng, W., Chen, H., Yeung, M. H., Wang, J., & Yan, C. H. (2010). Heteroepitaxial growth of core–shell and core–multishell nanocrystals composed of palladium and gold. Small, 6(22), 2566–2575.

    Article  CAS  Google Scholar 

  • Wang, H., Chen, L., Feng, Y., & Chen, H. (2013). Exploiting core–shell synergy for nanosynthesis and mechanistic investigation. Accounts of chemical research, 46(7), 1636–1646.

    Article  CAS  Google Scholar 

  • Wang, L., Wang, X., Luo, J., Wanjala, B. N., Wang, C., Chernova, N. A., & Zhong, C. J. (2010). Core− shell-structured magnetic ternary nanocubes. Journal of the American Chemical Society, 132(50), 17686–17689.

    Article  CAS  Google Scholar 

  • Wang, Y., & Toshima, N. (1997). Preparation of Pd− Pt bimetallic colloids with controllable core/shell structures. The Journal of Physical Chemistry B, 101(27), 5301–5306.

    Article  CAS  Google Scholar 

  • Watson, K. J., Zhu, J., Nguyen, S. T., & Mirkin, C. A. (1999). Hybrid nanoparticles with block copolymer shell structures. Journal of the American Chemical Society, 121(2), 462–463.

    Article  CAS  Google Scholar 

  • Willner, I., & Katz, E. (2003). Magnetic control of electrocatalytic and bioelectrocatalytic processes. Angewandte Chemie, 115(38), 4724–4737.

    Article  Google Scholar 

  • Wu, X. J., & Xu, D. (2009). Formation of yolk/SiO2 shell structures using surfactant mixtures as template. Journal of the American Chemical Society, 131(8), 2774–2775.

    Article  CAS  Google Scholar 

  • Xiao, X. Y., Chen, S. H., Li, S. S., Wang, J., Zhou, W. Y., & Huang, X. J. (2019). Synergistic catalysis of N vacancies and∼ 5 nm Au nanoparticles promoted the highly sensitive electrochemical determination of lead (ii) using an Au/N-deficient-C 3 N 4 nanocomposite. Environmental Science: Nano, 6(6), 1895–1908.

    CAS  Google Scholar 

  • Xie, L., Guo, J., Zhang, Y., & Shi, S. (2014). Efficient determination of protocatechuic acid in fruit juices by selective and rapid magnetic molecular imprinted solid phase extraction coupled with HPLC. Journal of Agriculture and Food Chemistry, 62(32), 8221–8228.

    Article  CAS  Google Scholar 

  • Xu, J. H., Gao, F. P., Li, L. L., Ma, H. L., Fan, Y. S., Liu, W., & Wang, H. (2013). Gelatin–mesoporous silica nanoparticles as matrix metalloproteinases-degradable drug delivery systems in vivo. Microporous and mesoporous materials, 182, 165–172.

    Article  CAS  Google Scholar 

  • Xu, X., Friedman, G., Humfeld, K. D., Majetich, S. A., & Asher, S. A. (2001). Superparamagnetic photonic crystals. Advanced materials, 13(22), 1681–1684.

    Article  CAS  Google Scholar 

  • Xu, X., Friedman, G., Humfeld, K. D., Majetich, S. A., & Asher, S. A. (2002). Synthesis and utilization of monodisperse superparamagnetic colloidal particles for magnetically controllable photonic crystals. Chemistry of Materials, 14(3), 1249–1256.

    Article  CAS  Google Scholar 

  • Yan, J. M., Zhang, X. B., Akita, T., Haruta, M., & Xu, Q. (2010). One-step seeding growth of magnetically recyclable Au@ Co core− shell nanoparticles: Highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane. Journal of the American Chemical Society, 132(15), 5326–5327.

    Article  CAS  Google Scholar 

  • Yang, C., Wang, G., Lu, Z., Sun, J., Zhuang, J., & Yang, W. (2005). Effect of ultrasonic treatment on dispersibility of Fe3O4 nanoparticles and synthesis of multi-core Fe3O4/SiO2 core/shell nanoparticles. Journal of Materials Chemistry, 15(39), 4252–4257.

    Article  CAS  Google Scholar 

  • Yang, J., Elim, H. I., Zhang, Q., Lee, J. Y., & Ji, W. (2006). Rational synthesis, self-assembly, and optical properties of PbS− Au heterogeneous nanostructures via preferential deposition. Journal of the American Chemical Society, 128(36), 11921–11926.

    Article  CAS  Google Scholar 

  • Yin, Y., Rioux, R. M., Erdonmez, C. K., Hughes, S., Somorjai, G. A., & Alivisatos, A. P. (2004). Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science, 304(5671), 711–714.

    Article  CAS  Google Scholar 

  • Yoo, J. W., Hathcock, D., & El-Sayed, M. A. (2002). Characterization of Pt nanoparticles encapsulated in Al2O3 and their catalytic efficiency in propene hydrogenation. The Journal of Physical Chemistry A, 106(10), 2049–2054.

    Article  CAS  Google Scholar 

  • Youn, H. C., Baral, S., & Fendler, J. H. (1988). Dihexadecyl phosphate, vesicle-stabilized and in situ generated mixed cadmium sulfide and zinc sulfide semiconductor particles: Preparation and utilization for photosensitized charge separation and hydrogen generation. The Journal of Physical Chemistry, 92(22), 6320–6327.

    Article  CAS  Google Scholar 

  • Yu, H., Chen, M., Rice, P. M., Wang, S. X., White, R. L., & Sun, S. (2005). Dumbbell-like bifunctional Au− Fe3O4 nanoparticles. Nano letters, 5(2), 379–382.

    Article  CAS  Google Scholar 

  • Yun, J., Hwang, S. H., & Jang, J. (2015). Fabrication of Au@ Ag core/shell nanoparticles decorated TiO2 hollow structure for efficient light-harvesting in dye-sensitized solar cells. ACS applied materials & interfaces, 7(3), 2055–2063.

    Article  CAS  Google Scholar 

  • Zhang, H., Zhou, L., Noonan, O., Martin, D. J., Whittaker, A. K., & Yu, C. (2014). Tailoring the void size of iron oxide@ carbon yolk–shell structure for optimized lithium storage. Advanced Functional Materials, 24(27), 4337–4342.

    Article  CAS  Google Scholar 

  • Zhang, J., Tang, Y., Weng, L., & Ouyang, M. (2009). Versatile strategy for precisely tailored core@ shell nanostructures with single shell layer accuracy: The case of metallic shell. Nano letters, 9(12), 4061–4065.

    Article  CAS  Google Scholar 

  • Zhang, L., Dong, W. F., & Sun, H. B. (2013). Multifunctional superparamagnetic iron oxide nanoparticles: Design, synthesis and biomedical photonic applications. Nanoscale, 5(17), 7664–7684.

    Article  CAS  Google Scholar 

  • Zhang, L., Wang, T., Li, L., Wang, C., Su, Z., & Li, J. (2012). Multifunctional fluorescent-magnetic polyethyleneimine functionalized Fe3O4–mesoporous silica yolk–shell nanocapsules for siRNA delivery. Chemical Communications, 48(69), 8706–8708.

    Article  CAS  Google Scholar 

  • Zhang, T., Ge, J., Hu, Y., Zhang, Q., Aloni, S., & Yin, Y. (2008). Formation of hollow silica colloids through a spontaneous dissolution–regrowth process. Angewandte Chemie International Edition, 47(31), 5806–5811.

    Article  CAS  Google Scholar 

  • Zhang, X., Liu, Y., & Qin, G. (2015). Break snoek limit via superparamagnetic coupling in Fe3O4/silica multiple-core/shell nanoparticles. Applied Physics Letters, 106(3), 033105.

    Article  CAS  Google Scholar 

  • Zhao, Y., Li, J., Wu, C., Ding, Y., & Guan, L. (2012). A yolk-shell Fe3O4@ C composite as an anode material for high-rate lithium batteries. ChemPlusChem, 77(9), 748–751.

    Article  CAS  Google Scholar 

  • Zheng, Y., Cheng, Y., Wang, Y., Bao, F., Zhou, L., Wei, X., et al. (2006). Quasicubic α-Fe2O3 nanoparticles with excellent catalytic performance. The Journal of Physical Chemistry B, 110(7), 3093–3097.

    Article  CAS  Google Scholar 

  • Zhou, H. S., Sasahara, H., Honma, I., Komiyama, H., & Haus, J. W. (1994). Coated semiconductor nanoparticles: The CdS/PbS system’s photoluminescence properties. Chemistry of Materials, 6(9), 1534–1541.

    Article  CAS  Google Scholar 

  • Zhu, Y., Ikoma, T., Hanagata, N., & Kaskel, S. (2010). Rattle-type Fe3O4@ SiO2 hollow mesoporous spheres as carriers for drug delivery. Small, 6(3), 471–478.

    Article  CAS  Google Scholar 

  • Zhu, Z. H., Sha, M. J., & Lei, M. K. (2008). Controllable formation of Er3+–Yb3+ codoped Al2O3 films by the non-aqueous sol–gel method. Thin Solid Films, 516(15), 5075–5078.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachna Bhateria.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Bhateria, R. Core–shell nanostructures: a simplest two-component system with enhanced properties and multiple applications. Environ Geochem Health 43, 2459–2482 (2021). https://doi.org/10.1007/s10653-020-00766-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00766-1

Keywords

Navigation