Skip to main content
Log in

Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The synthesis of metal nanoparticles using greener methodology and its application in biological fields is a burgeoning field of research. We demonstrated the synthesis of silver nanoparticles using turnip leaf extract and its interaction with wood-degrading fungal pathogens such as Gloeophyllum abietinum, G. trabeum, Chaetomium globosum, and Phanerochaete sordida. TEM images revealed that the silver nanoparticles were predominantly spherical and loosely agglomerated with an average size of 16.14 nm. DLS measurement of silver nanoparticles revealed an average hydrodynamic diameter of ca. 39.5 nm with a zeta potential of −14.8 mV at pH 7.5. FTIR spectra revealed the presence of amine and aliphatic esters, which were involved in the reduction and stabilization of silver nanoparticles. The as-synthesized silver nanoparticles showed broad spectrum antifungal activity against wood-degrading fungi by inhibiting growth. Thus, the greener-synthesized silver nanoparticles can be used as an antifungal agent against wood-degrading fungal pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Ahmad, T., Wani, I. A., Manzoor, N., Ahmed, J., & Asiri, A. M. (2013). Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 107, 227–234.

    Article  CAS  PubMed  Google Scholar 

  • Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52, 662–668.

    Article  CAS  PubMed  Google Scholar 

  • Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A., & Rai, M. (2009). Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine: NBM, 5, 382–386.

    Article  CAS  Google Scholar 

  • Gopinath, V., & Velusamy, P. (2013). Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 106, 170–174.

    Article  CAS  Google Scholar 

  • Hamed, S. A. M. (2013). In-vitro studies on wood degradation in soil by soft-rot fungi: Aspergillus niger and Penicillium chrysogenum. International Biodeterioration & Biodegradation, 78, 98–102.

    Article  CAS  Google Scholar 

  • Hussain, I., Brust, M., Papworth, A. J., & Cooper, A. I. (2003). Preparation of acrylate-stabilized gold and silver hydrosols and gold-polymer composite films. Langmuir, 19, 4831–4835.

    Article  CAS  Google Scholar 

  • Jensen, K. A., Jr., Houtman, C. J., Ryan, Z. C., & Hammel, K. E. (2001). Pathways for extracellular Fenton chemistry in the brown rot basidiomycete Gloeophyllum trabeum. Applied and Environmental Microbiology, 67, 2705–2711.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jo, Y. K., Kim, B. H., & Jung, G. (2009). Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Diseases, 93, 1037–1043.

    Article  CAS  Google Scholar 

  • Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–329.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment. Journal of Physical Chemistry B, 107, 668–677.

    Article  CAS  Google Scholar 

  • Kim, S. W., Kim, K. S., Lamsal, K., Kim, Y. J., Kim, S. B., Jung, M., et al. (2009). An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. Journal of Microbiology and Biotechnology, 19, 760–764.

    PubMed  Google Scholar 

  • Kim, S. W., Jung, J. H., Lamsal, K., Kim, Y. S., Min, J. S., & Lee, Y. S. (2012). Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology, 40, 53–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knoll, B., & Keilmann, F. (1999). Near-field probing of vibrational absorption for chemical microscopy. Nature, 399, 134–137.

    Article  CAS  Google Scholar 

  • Krishnaraj, C., Ramachandran, R., Mohan, K., & Kalaichelvan, P. T. (2012). Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 93, 95–99.

    Article  CAS  Google Scholar 

  • Kvitek, L., Panacek, A., Soukupova, J., Kolar, M., Vecerova, R., Prucek, R., et al. (2008). Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). Journal of Physical Chemistry C, 112, 5825–5834.

    Article  CAS  Google Scholar 

  • Matsumura, Y., Yoshikata, K., Kunisaki, S.-I., & Tsuchido, T. (2003). Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Applied and Environmental Microbiology, 69, 74278–74281.

    Article  Google Scholar 

  • Min, J. S., Kim, K. S., Kim, S. W., Jung, J. H., Lamsal, K., Kim, S. B., et al. (2009). Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathology Journal, 25, 376–380.

    Article  CAS  Google Scholar 

  • Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J., Ramirez, J. T., et al. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346–2353.

    Article  CAS  PubMed  Google Scholar 

  • Nam, J. M., Thaxton, C. S., & Mirkin, C. A. (2003). Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science, 301, 1884–1886.

    Article  CAS  PubMed  Google Scholar 

  • Narayanan, K. B., & Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science, 156, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Narayanan, K. B., & Sakthivel, N. (2011a). Extracellular synthesis of silver nanoparticles using the leaf extract of Coleus amboinicus Lour. Materials Research Bulletin, 46, 1708–1713.

    Article  CAS  Google Scholar 

  • Narayanan, K. B., & Sakthivel, N. (2011b). Heterogeneous catalytic reduction of anthropogenic pollutant, 4-nitrophenol by silver-bionanocomposite using Cylindrocladium floridanum. Bioresource Technology, 102, 10737–10740.

    Article  CAS  PubMed  Google Scholar 

  • Narayanan, K. B., & Sakthivel, N. (2011c). Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Advances in Colloid and Interface Science, 169, 59–79.

    Article  CAS  PubMed  Google Scholar 

  • Nomiya, K., Yoshizawa, A., Tsukagoshi, K., Kasuga, N. C., Hirakawa, S., & Watanabe, J. (2004). Synthesis and structural characterization of silver(I), aluminium(III) and cobalt(II) complexes with 4-isopropyltropolone (hinokitiol) showing noteworthy biological activities. Action of silver(I)-oxygen bonding complexes on the antimicrobial activities. Journal of Inorganic Biochemistry, 98, 46–60.

    Article  CAS  PubMed  Google Scholar 

  • Panyala, N. R., Pena-Mendez, E. M., & Havel, J. (2008). Silver of silver nanoparticles: a hazardous threat to the environment and human health? Journal of Applied Biomedicine, 6, 117–129.

    CAS  Google Scholar 

  • Parenti, A., Muguerza, E., Iroz, A. R., Omarini, A., Conde, E., Alfaro, M., et al. (2013). Induction of laccase activity in the white rot fungus Pleurotus ostreatus using water polluted with wheat straw extracts. Bioresource Technology, 133, 142–149.

    Article  CAS  PubMed  Google Scholar 

  • Park, H. J., Kim, S. H., Kim, H. J., & Choi, S. H. (2006). A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathology Journal, 22, 295–302.

    Article  Google Scholar 

  • Peng, S., McMahon, J. M., Schatz, G. C., Gray, S. K., & Sun, Y. (2010). Reversing the size-dependence of surface plasmon resonances. PNAS, 107, 14530–14534.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pinto, R. J. B., Almeida, A., Fernandes, S. C. M., Freire, C. S. R., Silvestre, A. J. D., Neto, C. P., et al. (2013). Antifungal activity of transparent nanocomposite thin films of pullulan and silver against Aspergillus niger. Colloids and Surfaces B: Biointerfaces, 103, 143–148.

    Article  CAS  PubMed  Google Scholar 

  • Rao, C. N. R., & Biswas, K. (2009). Characterization of nanomaterials by physical methods. Annual Review of Analytical Chemistry, 2, 435–462.

    Article  CAS  PubMed  Google Scholar 

  • Ruttimann-Johnson, C., Cullen, D., & Lamar, R. T. (1994). Manganese peroxidases of the white rot fungus Phanerochaete sordida. Applied and Environmental Microbiology, 60, 599–605.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schilling, J. S., Duncan, S. M., Presley, G. N., Filley, T. R., Jurgens, J. A., & Blanchette, R. (2013). Colocalizing incipient reactions in wood degraded by the brown rot fungus Postia placenta. International Biodeterioration & Biodegradation, 83, 56–62.

    Article  CAS  Google Scholar 

  • Sengupta, S., Eavarone, D., Capila, I., Zhao, G., Watson, N., Kiziltepe, T., et al. (2005). Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature, 436, 568–572.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, V. K., Yngard, R. A., & Lin, Y. (2009). Silver nanoparticles: green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145, 83–96.

    Article  CAS  PubMed  Google Scholar 

  • Solomon, S. D., Bahadory, M., Jeyarajasingam, A. V., Rutkowsky, S. A., Boritz, C., & Mulfinger, L. (2007). Synthesis and study of silver nanoparticles. Journal of Chemical Education, 84, 322–325.

    Article  CAS  Google Scholar 

  • Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study of E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275, 177–182.

    Article  CAS  PubMed  Google Scholar 

  • Spoel, S. H., & Dong, X. (2012). How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews Immunology, 12, 89–100.

    Article  CAS  PubMed  Google Scholar 

  • Thenmozhi, M., Kannabiran, K., Kumar, R., & Khanna, V. G. (2013). Antifungal activity of Streptomyces sp. VITSTK7 and its synthesized Ag2O/Ag nanoparticles against medically important Aspergillus pathogens. Journal de Mycologie Médicale, 23, 97–103.

    Article  CAS  PubMed  Google Scholar 

  • Valodkar, M., Jadeja, R. N., Thounaojam, M. C., Devkar, R. V., & Thakore, S. (2011). Biocompatible synthesis of peptide capped copper nanoparticles and their biological effect on tumor cells. Materials Chemistry and Physics, 128, 83–89.

    Article  CAS  Google Scholar 

  • William, D. H., & Fleming, I. (1980). Spectroscopic methods in organic chemistry (3rd ed., pp. 1–73). London: McGraw-Hill Book Co. (UK), Ltd.

    Google Scholar 

  • Yu, S. J., Yin, Y. G., & Liu, J. F. (2013). Silver nanoparticles in the environment. Environmental Science: Processes and Impacts, 15, 78–92.

    Google Scholar 

Download references

Acknowledgments

The authors thank Yeungnam University for providing scientific support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Ho Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayanan, K.B., Park, H.H. Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. Eur J Plant Pathol 140, 185–192 (2014). https://doi.org/10.1007/s10658-014-0399-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-014-0399-4

Keywords

Navigation