Skip to main content
Erschienen in: Journal of Elasticity 2/2015

01.12.2015

The Exponentiated Hencky-Logarithmic Strain Energy. Part I: Constitutive Issues and Rank-One Convexity

verfasst von: Patrizio Neff, Ionel-Dumitrel Ghiba, Johannes Lankeit

Erschienen in: Journal of Elasticity | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We investigate a family of isotropic volumetric-isochoric decoupled strain energies
$$\begin{aligned} F\mapsto W_{\mathrm{eH}}(F):=\widehat{W}_{\mathrm{eH}}(U):=\left \{ \begin{array}{l@{\quad}l} \frac{\mu}{k} e^{k\|\operatorname {dev}_n\log{U}\|^2}+\frac{\kappa}{{2 {\widehat {k}}}} e^{\widehat{k}[\operatorname {tr}(\log U)]^2}&\text{if}\ \det F>0,\\ +\infty&\text{if}\ \det F\leq0, \end{array} \right . \end{aligned}$$
based on the Hencky-logarithmic (true, natural) strain tensor logU, where μ>0 is the infinitesimal shear modulus, \(\kappa=\frac{2\mu+3\lambda}{3}>0\) is the infinitesimal bulk modulus with λ the first Lamé constant, \(k,\widehat{k}\) are additional dimensionless material parameters, F=∇φ is the gradient of deformation, \(U=\sqrt{F^{T} F}\) is the right stretch tensor and https://static-content.springer.com/image/art%3A10.1007%2Fs10659-015-9524-7/MediaObjects/10659_2015_9524_IEq4_HTML.gif is the n-dimensional deviatoric part of the strain tensor logU. For small elastic strains, W eH approximates the classical quadratic Hencky strain energy
$$\begin{aligned} F\mapsto W_{\mathrm{H}}(F):=\widehat{W}_{\mathrm{H}}(U)&:={\mu}\| \operatorname {dev}_n\log U\|^2+\frac{\kappa}{2}\bigl[\operatorname{tr}( \log U)\bigr]^2, \end{aligned}$$
which is not everywhere rank-one convex. In plane elastostatics, i.e., n=2, we prove the everywhere rank-one convexity of the proposed family W eH, for \(k\geq\frac{1}{4}\) and \(\widehat{k}\geq\frac{1}{8}\). Moreover, we show that the corresponding Cauchy (true)-stress-true-strain relation is invertible for n=2,3 and we show the monotonicity of the Cauchy (true) stress tensor as a function of the true strain tensor in a domain of bounded distortions. We also prove that the rank-one convexity of the energies belonging to the family W eH is not preserved in dimension n=3 and that the energies
$$\begin{aligned} F\mapsto\frac{\mu}{k}e^{k\|\log U\|^2},\qquad F\mapsto\frac{\mu }{k}e^{\frac{k}{\mu} \bigl(\mu\|\operatorname {dev}_n\log U\|^2+\frac{\kappa}{2}[\operatorname {tr}(\log U)]^2 \bigr)}, \quad F \in\mathrm{GL}^+(n), n\in \mathbb {N}, n\geq2 \end{aligned}$$
are also not rank-one convex.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Although every such Riemannian metric is uniquely characterized by three coefficients, the geodesic distance to SO(n) in fact depends on only two of them, corresponding to the two material parameters μ and κ.
 
2
Truesdell writes [251]: “It is important to realize that since each of the several material tensors [the strain tensors like https://static-content.springer.com/image/art%3A10.1007%2Fs10659-015-9524-7/MediaObjects/10659_2015_9524_IEq22_HTML.gif , https://static-content.springer.com/image/art%3A10.1007%2Fs10659-015-9524-7/MediaObjects/10659_2015_9524_IEq23_HTML.gif , logU, UU −1] is an isotropic function of any one of the others, an exact description of strain in terms of any one is equivalent to a description in terms of any other; only when an approximation is to be made may the choice of a particular measure become important.”
 
3
Such an assumption is especially suitable for only slightly compressible materials or under small elastic strains [98].
 
4
In Hencky’s first paper [99], the constitutive law https://static-content.springer.com/image/art%3A10.1007%2Fs10659-015-9524-7/MediaObjects/10659_2015_9524_IEq34_HTML.gif is proposed, which is Cauchy-elastic, tensorially correct, but not hyperelastic. This has been corrected by Hencky in later papers. Incidentally, Becker’s law (1.6) is also Cauchy-elastic, tensorially correct, but hyperelastic only for ν=0 [33, 46] (see also [176, 265]).
 
5
Note that (1.7) is the uniaxial specification of (1.6), and (1.6) is closely resembling (1.5)2. A small calculation [176] shows τ Becker=Vτ H, where τ is the corresponding Kirchhoff stress τ=(detF)⋅σ=D logV W(logV) and V is the left stretch tensor. Moreover https://static-content.springer.com/image/art%3A10.1007%2Fs10659-015-9524-7/MediaObjects/10659_2015_9524_IEq35_HTML.gif . Hence, for small elastic strains https://static-content.springer.com/image/art%3A10.1007%2Fs10659-015-9524-7/MediaObjects/10659_2015_9524_IEq36_HTML.gif , Becker’s law coincides with Hencky’s model to first order in the nonlinear strain measure https://static-content.springer.com/image/art%3A10.1007%2Fs10659-015-9524-7/MediaObjects/10659_2015_9524_IEq37_HTML.gif .
 
6
In the German metal forming literature the logarithmic strain is also called “Umformgrad”. In [138, page 17] Ludwik uses the “effective specific elongation” \(\alpha=\int_{\ell_{0}}^{\ell} \frac{d \ell}{\ell }=\ln\frac{\ell}{\ell_{0}}\). It can be motivated by considering the summation over the infinitesimal increase in length as referred to the current length, i.e., \(\ln \frac{\ell}{\ell _{0}}=\lim_{N\rightarrow\infty} \sum_{i=0}^{N-1}\frac{\ell _{i+1}-\ell_{i}}{\ell_{i}}\) [94, 261]. The scalar Hencky-type measure \(\| \operatorname {dev}_{3}\log U\|\) is sometimes used as “equivalent strain” in order to represent the degree of plastic deformation [184, 185]. Its use for severe shearing has been questioned in [224]. In our opinion the problematic issue is not the logarithmic measure itself, but its degenerate (sublinear) growth behavior for large strains. The opposing views may be reconciled by using \(e^{\|\operatorname {dev}_{3}\log U\|}\) as “exponentiated equivalent strain” measure.
 
7
I.e., an amorphous metal which is very nearly isotropic with superior elastic deformability up to 1–2 % distortional strain, but which shows no ductility, in contrast to polycrystalline metals which typically show elastic strains up only to 0.1–0.2 %. Recently, Murphy [163] (see also [266]) has postulated a linear Cauchy stress-strain relation for some strain measure and gets as well W H as a preferred solution. His corresponding “strain measure” E is then \(E:=\frac{1}{\det V}\cdot \log V\), so that https://static-content.springer.com/image/art%3A10.1007%2Fs10659-015-9524-7/MediaObjects/10659_2015_9524_IEq43_HTML.gif , which is Hencky’s relation in disguise. However, VE(V) is not invertible, thus E does not really qualify as a strain measure.
 
8
Tarantola noted [245, page 15] that “Cauchy originally defined the strain as https://static-content.springer.com/image/art%3A10.1007%2Fs10659-015-9524-7/MediaObjects/10659_2015_9524_IEq44_HTML.gif , but many lines of thought suggest that this was just a guess, that, in reality is just the first order approximation to the more proper definition https://static-content.springer.com/image/art%3A10.1007%2Fs10659-015-9524-7/MediaObjects/10659_2015_9524_IEq45_HTML.gif  , i.e., in reality, https://static-content.springer.com/image/art%3A10.1007%2Fs10659-015-9524-7/MediaObjects/10659_2015_9524_IEq46_HTML.gif ”.
 
9
In the one dimensional case \({\varphi(x_{1},t)=(\varphi_{1}(x_{1},t), x_{2}, x_{3})^{T} \Rightarrow F=\nabla} \varphi=\operatorname {diag}({\varphi }_{1,x_{1}},1,1)\Rightarrow D={\mathrm{sym}}(\dot{F}{F}^{-1})=\operatorname {diag}(\frac{\dot{\varphi}_{1,x_{1}}}{\varphi_{1,x_{1}}},0,0 )\) and \(\int _{0}^{t} \frac{\dot{\varphi}_{1,x_{1}}}{\varphi_{1,x_{1}}} ds=\log|\varphi_{1,x_{1}}|+C\cong\log U\).
 
10
Computing the rates \(\frac{\mathrm{d}}{{\mathrm {dt}}} \log U\) is more complicated because, in addition to the principal strains being a function of time, the principal directions also change in time [69, 93, 112, 120].
 
11
Since GL+(3) is an open subset of \(\mathbb {R}^{3\times3}\), in accordance with [15, page 352] we say that W is rank-one convex on GL+(3) if it is convex on all closed line segments in GL+(3) with end points differing by a matrix of rank one, i.e.,
$$\begin{aligned} W\bigl( F+(1-\theta) \xi\otimes\eta\bigr)\leq\theta W( F)+(1-\theta) W(F+ \xi\otimes\eta), \end{aligned}$$
(1.9)
for all F∈GL+(3), θ∈[0,1], and for all ξ, \(\eta\in\mathbb{R}^{3}\), with F+η∈GL+(3) for all t∈[0,1]. In other words, the energy function W is rank-one convex on GL+(3) if and only if the function tW(F+η) is convex \(\forall \xi, \eta\in\mathbb{R}^{3}\), on all closed line segments in the set {t:F+η∈GL+(3)}.
 
12
The condition \(D^{2}_{F} W(F)(\xi\otimes\xi,\xi\otimes\xi)>0 \forall\xi\in\mathbb{R}^{3}\setminus\{0\}\), i.e., the convexity of tW(F+ξ) for all \(\xi\in\mathbb{R}^{3}\) with F+ξ∈GL+(3) for all t∈[0,1], is a necessary condition for the existence of at least one longitudinal acceleration wave [4, 213, 270].
 
13
The domain where the Hencky energy W H is rank-one convex is included in the domain for which the eigenvalues λ 1,λ 2,λ 3 of U satisfy \(\lambda_{1}^{2}\leq e^{2} \lambda_{2}\lambda_{3},\lambda_{2}^{2}\leq e^{2} \lambda_{3}\lambda_{1}, \lambda_{3}^{2}\leq e^{2} \lambda_{1}\lambda_{2} \) (see Corollary 5.10). Moreover, this domain is included in the domain defined by \(\|\operatorname {dev}_{3}\log U\|^{2}\leq\frac {4}{3}\). Numerical computations reveal that the exponentiated Hencky energy is rank-one convex in a domain for which \(\|\operatorname {dev}_{3}\log U\|^{2}\leq a\) with \(a> \frac{4}{3}\) (see Sect. 6.3).
 
14
In this paper we also show that for planar elastostatics \(F\mapsto e^{\|\log U\|^{2}}\) is not rank-one convex, a surprising observation which is difficult to obtain, since ellipticity is lost for extremely large principal stretches only.
 
15
The idea of considering the exponential function in modelling of nonlinear elasticity is not entirely new. In fact \(W(F)=\frac{\mu}{2 k} [e^{k (I_{1}-3)}-1 ]\), where \(I_{1}=\operatorname {tr}(F F^{T})\), is a Fung-type model which is often used in the biomechanics literature to describe the nonlinearly elastic response of biological tissues [25, 85]. In the limit \(\lim_{k\rightarrow0}\frac{\mu}{2 k} [e^{k (I_{1}-3)}-1 ]=\frac{\mu}{2}(I_{1}-3)\), we recover the Neo-Hookean energy for elastic incompressible materials. Another Fung-type energy [25, 85] is https://static-content.springer.com/image/art%3A10.1007%2Fs10659-015-9524-7/MediaObjects/10659_2015_9524_IEq88_HTML.gif .
 
16
Richter in 1949 [197] already considers the following complete set of isotropic invariants: \(K_{1}=\operatorname {tr}(\log U), K_{2}^{2}= \operatorname {tr}((\operatorname {dev}_{3}\log U)^{2})\) and \(\operatorname {tr}((\operatorname {dev}_{3}\log U)^{3})\), see also [139]. A similar list of invariants was used by Lurie [139, page 189]: K 1, K 2 and \(\widetilde{K}_{3}=\arcsin(K_{3})\).
 
17
The energy (1.12) does not satisfy the tension-compression symmetry.
 
18
The numerical results given by Hennan and Anand [98] correspond to the large volumetric strain range 0.75≤detF≤1.16 (−0.3≤logdetF≤0.15) but small shear strain range \(\|\operatorname {dev}_{3}\log V\|\leq0.035\).
 
19
Since \(\operatorname {tr}(\sigma)=0\) one might rather expect the stronger statement \(B=\Bigl( {\scriptsize\begin{matrix} B_{11} & B_{12} & 0 \cr B_{12} & B_{22} & 0 \cr 0 & 0 & 1 \end{matrix}} \Bigr)\), i.e., B 33=1, as well as detB=1. However, this is not true in general for isotropic energies, e.g., it is not satisfied for Neo-Hooke or Mooney-Rivlin type materials.
 
20
In the literature, all these concepts are defined using strict inequalities for λ i λ j , ij. In this paper these common cases will be denoted by TE+, OF+, E+ and PC+, respectively.
 
21
These inequalities appear also, but not as strict inequalities, in the following theorem:
Theorem 2.1 ([16, Theorem 6.5]) Let \({W}:\mathrm{GL}^{+}(n)\rightarrow\mathbb{R}\) be an objective-isotropic function of class C 2 with the representation in terms of the singular values of U via \(W(F)=\widehat{W}(U)=g(\lambda_{1},\lambda_{2},\ldots ,\lambda_{n})\) . Let F∈GL+(n) be given with the n-tuple of singular values λ 1,λ 2,…,λ n . Then D 2 W(F)[H,H]≥0 for every \(H\in \mathbb {R}^{n\times n}\) if and only if the following conditions hold simultaneously:
(i)
\(\sum_{i,j=1}^{n} \frac{\partial^{2} g}{\partial\lambda _{i} \partial\lambda_{j}}a_{i}a_{j}\geq0\) for every \((a_{1},a_{2},\ldots ,a_{n})\in \mathbb {R}^{n}\) (convexity of g);
 
(ii)
for every \(i\neq j, \underbrace{\frac{\frac{\partial g}{\partial\lambda_{i}}-\frac {\partial g}{\partial\lambda_{j}}}{\lambda_{i}-\lambda_{j}}\geq 0}_{\text{``}\mathrm{OF}\mbox{-}\mathrm{inequality}\text{''}}\ \text{if}\ \lambda_{i}\neq \lambda_{j}, \frac{\partial^{2} g}{\partial\lambda_{i}^{2}}-\frac {\partial^{2} g}{\partial \lambda_{i}\partial\lambda_{j}}\geq0 \ \text{if}\ \lambda _{i}=\lambda_{j}\).
 
(iii)
\(\frac{\partial g}{\partial\lambda_{i}}+\frac {\partial g}{\partial\lambda_{j}}\geq0\) for every ij.
 
Hence, if the function FW(F) is convex in F∈GL+(n), then the OF-inequalities hold true. However, the convexity of FW(F) is physically not acceptable, since it precludes buckling.
 
22
Similarly, as shown in [134] the energy \(C\mapsto\frac{\mu}{4} [\|C\|^{2}-2 \log(\det C)-3 ]\) is convex in C and indeed polyconvex. The convexity in C has been used by Fung [85] to invert the second Piola-Kirchhoff stress tensor S 2=2D C [W(C)].
 
23
This is suggested by the formula presented in [29, page 736]: \(e^{\alpha\cdot\widehat{A}}=\bigl( {\scriptsize\begin{matrix} \cosh\alpha& \sinh\alpha \cr \sinh\alpha& \cosh\alpha \end{matrix}} \bigr)\ \text{for} \ \widehat{A}=\bigl( {\scriptsize\begin{matrix} 0 & \alpha \cr \alpha& 0 \end{matrix}} \bigr)\).
 
24
In terms of the Young’s modulus and the shear modulus ν is given by \(\nu=\frac{E}{2 \mu}-1\), while in terms of the Young’s modulus and the bulk modulus κ it is given by \(\nu =\frac{1}{2}-\frac{E}{6 \kappa}\).
 
25
We use that \(\kappa=\frac{2 \mu (1+\nu)}{3 (1-2\nu)}\), \(\nu=\frac{3 \kappa-2 \mu}{2(3 \kappa+\mu)}\).
 
26
In [159] it is claimed that the classical elasticity formulation is applicable only for \(\frac{1}{5}<\nu<\frac{1}{2}\).
 
27
We use the definition of polyconvexity given by Ball [15] (see also [216, 220]). Polyconvexity implies LH-ellipticity and may lead to an existence theorem based on the direct methods of the calculus of variations, provided that proper growth conditions are satisfied [18, 20, 96, 167, 168].
 
28
For this special material the energy is elliptic for \(\rho<\frac{\lambda_{1}}{\lambda_{2}}<\frac{1}{\rho}\), \(\rho=2-\sqrt{3}=0.268\).
 
29
This means \(e^{k \|\operatorname {dev}_{3} \log (a U)\|^{2}}=e^{k \|\operatorname {dev}_{3}\log U\|^{2}}\) for all a>0.
 
30
The invariance under inversion of an energy W is the tension-compression symmetry W(F)=W(F −1).
 
31
Hutchinson and Neale [116] have considered the energy \(\|\operatorname {dev}_{3}\log U\|^{N}\) for 0<N≤1.
 
32
In [257] Vallée et al. have given a proof without using a Taylor expansion.
 
Literatur
1.
Zurück zum Zitat Adamov, A.A.: Comparative analysis of the two-constant generalizations of Hooke’s law for isotropic elastic materials at finite strains. J. Appl. Mech. Tech. Phys. 42(5), 890–897 (2001) ADSCrossRefMATH Adamov, A.A.: Comparative analysis of the two-constant generalizations of Hooke’s law for isotropic elastic materials at finite strains. J. Appl. Mech. Tech. Phys. 42(5), 890–897 (2001) ADSCrossRefMATH
2.
Zurück zum Zitat Al-Mohy, A., Higham, N., Relton, S.: Computing the Fréchet derivative of the matrix logarithm and estimating the condition number. SIAM J. Sci. Comput. 35(4), C394–C410 (2013) MATHMathSciNetCrossRef Al-Mohy, A., Higham, N., Relton, S.: Computing the Fréchet derivative of the matrix logarithm and estimating the condition number. SIAM J. Sci. Comput. 35(4), C394–C410 (2013) MATHMathSciNetCrossRef
3.
Zurück zum Zitat Alexander, H.: The tensile instability of an inflated cylindrical membrane as affected by an axial load. Int. J. Mech. Sci. 13(2), 87–95 (1971) CrossRef Alexander, H.: The tensile instability of an inflated cylindrical membrane as affected by an axial load. Int. J. Mech. Sci. 13(2), 87–95 (1971) CrossRef
4.
Zurück zum Zitat Altenbach, H., Eremeyev, V., Lebedev, L., Rendón, L.A.: Acceleration waves and ellipticity in thermoelastic micropolar media. Arch. Appl. Mech. 80(3), 217–227 (2010) MATHADSCrossRef Altenbach, H., Eremeyev, V., Lebedev, L., Rendón, L.A.: Acceleration waves and ellipticity in thermoelastic micropolar media. Arch. Appl. Mech. 80(3), 217–227 (2010) MATHADSCrossRef
5.
Zurück zum Zitat Anand, L.: On H. Hencky’s approximate strain energy function for moderate deformations. J. Appl. Mech. 46, 78–82 (1979) MATHADSCrossRef Anand, L.: On H. Hencky’s approximate strain energy function for moderate deformations. J. Appl. Mech. 46, 78–82 (1979) MATHADSCrossRef
6.
Zurück zum Zitat Anand, L.: Moderate deformations in extension-torsion of incompressible isotropic elastic materials. J. Mech. Phys. Solids 34, 293–304 (1986) ADSCrossRef Anand, L.: Moderate deformations in extension-torsion of incompressible isotropic elastic materials. J. Mech. Phys. Solids 34, 293–304 (1986) ADSCrossRef
7.
Zurück zum Zitat Annaidh, A.N., Destrade, M., Gilchrist, M.D., Murphy, J.G.: Deficiencies in numerical models of anisotropic nonlinearly elastic materials. Biomech. Model. Mechanobiol. 12(4), 781–791 (2012) CrossRef Annaidh, A.N., Destrade, M., Gilchrist, M.D., Murphy, J.G.: Deficiencies in numerical models of anisotropic nonlinearly elastic materials. Biomech. Model. Mechanobiol. 12(4), 781–791 (2012) CrossRef
8.
Zurück zum Zitat Arghavani, J., Auricchio, F., Naghdabadi, R.: A finite strain kinematic hardening constitutive model based on Hencky strain: general framework, solution algorithm and application to shape memory alloys. Int. J. Plast. 27(6), 940–961 (2011) MATHCrossRef Arghavani, J., Auricchio, F., Naghdabadi, R.: A finite strain kinematic hardening constitutive model based on Hencky strain: general framework, solution algorithm and application to shape memory alloys. Int. J. Plast. 27(6), 940–961 (2011) MATHCrossRef
10.
Zurück zum Zitat Aubert, G.: Necessary and sufficient conditions for isotropic rank-one convex functions in dimension 2. J. Elast. 39(1), 31–46 (1995) MATHMathSciNetCrossRef Aubert, G.: Necessary and sufficient conditions for isotropic rank-one convex functions in dimension 2. J. Elast. 39(1), 31–46 (1995) MATHMathSciNetCrossRef
11.
Zurück zum Zitat Aubert, G., Tahraoui, R.: Conditions nécessaires de faible fermeture et de 1-rang convexité en dimension 3. Rend. Circ. Mat. Palermo 34(3), 460–488 (1985) MATHMathSciNetCrossRef Aubert, G., Tahraoui, R.: Conditions nécessaires de faible fermeture et de 1-rang convexité en dimension 3. Rend. Circ. Mat. Palermo 34(3), 460–488 (1985) MATHMathSciNetCrossRef
12.
Zurück zum Zitat Aubert, G., Tahraoui, R.: Sur la faible fermeture de certains ensembles de contraintes en élasticité non-linéaire plane. Arch. Ration. Mech. Anal. 97(1), 33–58 (1987) MATHMathSciNetCrossRef Aubert, G., Tahraoui, R.: Sur la faible fermeture de certains ensembles de contraintes en élasticité non-linéaire plane. Arch. Ration. Mech. Anal. 97(1), 33–58 (1987) MATHMathSciNetCrossRef
13.
Zurück zum Zitat Baker, M., Ericksen, J.L.: Inequalities restricting the form of the stress-deformation relation for isotropic elastic solids and Reiner-Rivlin fluids. J. Wash. Acad. Sci. 44, 33–35 (1954) MathSciNet Baker, M., Ericksen, J.L.: Inequalities restricting the form of the stress-deformation relation for isotropic elastic solids and Reiner-Rivlin fluids. J. Wash. Acad. Sci. 44, 33–35 (1954) MathSciNet
14.
Zurück zum Zitat Ball, J.M.: Constitutive inequalities and existence theorems in nonlinear elastostatics. In: Knops, R.J. (ed.) Herriot Watt Symposion: Nonlinear Analysis and Mechanics, vol. 1, pp. 187–238. Pitman, London (1977) Ball, J.M.: Constitutive inequalities and existence theorems in nonlinear elastostatics. In: Knops, R.J. (ed.) Herriot Watt Symposion: Nonlinear Analysis and Mechanics, vol. 1, pp. 187–238. Pitman, London (1977)
15.
Zurück zum Zitat Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977) MATHCrossRefMathSciNet Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977) MATHCrossRefMathSciNet
16.
17.
Zurück zum Zitat Ball, J.M.: Some open problems in elasticity. In: Newton, P., et al. (eds.) Geometry, Mechanics, and Dynamics, pp. 3–59. Springer, New York (2002) CrossRef Ball, J.M.: Some open problems in elasticity. In: Newton, P., et al. (eds.) Geometry, Mechanics, and Dynamics, pp. 3–59. Springer, New York (2002) CrossRef
18.
Zurück zum Zitat Balzani, D., Neff, P., Schröder, J., Holzapfel, G.A.: A polyconvex framework for soft biological tissues. Adjustment to experimental data. Int. J. Solids Struct. 43(20), 6052–6070 (2006) MATHCrossRefMathSciNet Balzani, D., Neff, P., Schröder, J., Holzapfel, G.A.: A polyconvex framework for soft biological tissues. Adjustment to experimental data. Int. J. Solids Struct. 43(20), 6052–6070 (2006) MATHCrossRefMathSciNet
19.
Zurück zum Zitat Balzani, D., Schröder, J., Gross, D., Neff, P.: Modeling of Anisotropic Damage in Arterial Walls Based on Polyconvex Stored Energy Functions. In: Owen, D.R.J., Onate, E., Suarez, B. (eds.) Computational Plasticity VIII, Fundamentals and Applications, Part 2, pp. 802–805. CIMNE, Barcelona (2005) Balzani, D., Schröder, J., Gross, D., Neff, P.: Modeling of Anisotropic Damage in Arterial Walls Based on Polyconvex Stored Energy Functions. In: Owen, D.R.J., Onate, E., Suarez, B. (eds.) Computational Plasticity VIII, Fundamentals and Applications, Part 2, pp. 802–805. CIMNE, Barcelona (2005)
20.
Zurück zum Zitat Balzani, D., Schröder, J., Neff, P., Holzapfel, G.A.: Materially stable constitutive equations for arterial walls based on polyconvex energies—application to damage modeling and residual stresses. J. Biomech. 39, 409 (2006) CrossRef Balzani, D., Schröder, J., Neff, P., Holzapfel, G.A.: Materially stable constitutive equations for arterial walls based on polyconvex energies—application to damage modeling and residual stresses. J. Biomech. 39, 409 (2006) CrossRef
21.
Zurück zum Zitat Batra, R.C.: On the coincidence of the principal axes of stress and strain in isotropic elastic bodies. Lett. Appl. Eng. Sci. 3, 435–439 (1975) MATH Batra, R.C.: On the coincidence of the principal axes of stress and strain in isotropic elastic bodies. Lett. Appl. Eng. Sci. 3, 435–439 (1975) MATH
22.
Zurück zum Zitat Batra, R.C.: Deformation produced by a simple tensile load in an isotropic elastic body. J. Elast. 6(1), 109–111 (1976) MATHCrossRef Batra, R.C.: Deformation produced by a simple tensile load in an isotropic elastic body. J. Elast. 6(1), 109–111 (1976) MATHCrossRef
23.
Zurück zum Zitat Batra, R.C., dell’Isola, F., Vidoli, S.: A second-order solution of Saint-Venant’s problem for a piezoelectric circular bar using Signorini’s perturbation method. J. Elast. 52(1), 75–90 (1998) MATHMathSciNetCrossRef Batra, R.C., dell’Isola, F., Vidoli, S.: A second-order solution of Saint-Venant’s problem for a piezoelectric circular bar using Signorini’s perturbation method. J. Elast. 52(1), 75–90 (1998) MATHMathSciNetCrossRef
24.
Zurück zum Zitat Bažant, Z.P.: Easy-to-compute tensors with symmetric inverse approximating Hencky finite strain and its rate. J. Eng. Mater. Trans. ASME 120, 131–136 (1998) CrossRef Bažant, Z.P.: Easy-to-compute tensors with symmetric inverse approximating Hencky finite strain and its rate. J. Eng. Mater. Trans. ASME 120, 131–136 (1998) CrossRef
25.
Zurück zum Zitat Beatty, M.: Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues—with examples. Appl. Mech. Rev. 40(12), 1699–1734 (1987) ADSCrossRef Beatty, M.: Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues—with examples. Appl. Mech. Rev. 40(12), 1699–1734 (1987) ADSCrossRef
26.
Zurück zum Zitat Beatty, M.F.: Introduction to nonlinear elasticity. In: Carroll, M.M., Hayes, M.A. (eds.) Nonlinear Effects in Fluids and Solids, pp. 13–112. Springer, Berlin (1996) CrossRef Beatty, M.F.: Introduction to nonlinear elasticity. In: Carroll, M.M., Hayes, M.A. (eds.) Nonlinear Effects in Fluids and Solids, pp. 13–112. Springer, Berlin (1996) CrossRef
28.
Zurück zum Zitat Bell, J.F.: Mechanics of Solids: Volume 1: The Experimental Foundations of Solid Mechanics. Handbuch der Physik. Springer, Berlin (1973) Bell, J.F.: Mechanics of Solids: Volume 1: The Experimental Foundations of Solid Mechanics. Handbuch der Physik. Springer, Berlin (1973)
29.
30.
Zurück zum Zitat Bertram, A., Böhlke, T., Šilhavý, M.: On the rank 1 convexity of stored energy functions of physically linear stress-strain relations. J. Elast. 86, 235–243 (2007) MATHCrossRefMathSciNet Bertram, A., Böhlke, T., Šilhavý, M.: On the rank 1 convexity of stored energy functions of physically linear stress-strain relations. J. Elast. 86, 235–243 (2007) MATHCrossRefMathSciNet
31.
32.
Zurück zum Zitat Bîrsan, M., Neff, P., Lankeit, J.: Sum of squared logarithms: an inequality relating positive definite matrices and their matrix logarithm. J. Inequal. Appl. 2013(1), 168 (2013) CrossRefMathSciNetMATH Bîrsan, M., Neff, P., Lankeit, J.: Sum of squared logarithms: an inequality relating positive definite matrices and their matrix logarithm. J. Inequal. Appl. 2013(1), 168 (2013) CrossRefMathSciNetMATH
33.
Zurück zum Zitat Blume, J.: On the form of the inverted stress-strain law for isotropic hyperelastic solids. Int. J. Non-Linear Mech. 27(3), 413–421 (1992) MATHMathSciNetADSCrossRef Blume, J.: On the form of the inverted stress-strain law for isotropic hyperelastic solids. Int. J. Non-Linear Mech. 27(3), 413–421 (1992) MATHMathSciNetADSCrossRef
34.
Zurück zum Zitat Böhlke, T., Bertram, A.: On ellipticity of finite isotropic linear elastic laws. Preprint der Fakultät für Maschinenbau, Otto-von-Guericke-Universität Magdeburg (1), 1–18 (2002) Böhlke, T., Bertram, A.: On ellipticity of finite isotropic linear elastic laws. Preprint der Fakultät für Maschinenbau, Otto-von-Guericke-Universität Magdeburg (1), 1–18 (2002)
35.
Zurück zum Zitat Borwein, J.M., Vanderwerff, J.D.: Convex Functions. Constructions, Characterizations and Counterexamples. Cambridge University Press, Cambridge (2010) MATHCrossRef Borwein, J.M., Vanderwerff, J.D.: Convex Functions. Constructions, Characterizations and Counterexamples. Cambridge University Press, Cambridge (2010) MATHCrossRef
36.
Zurück zum Zitat Bruhns, O.T.: Die Berücksichtigung einer isotropen Werkstoffverfestigung bei der elastisch-plastischen Blechbiegung mit endlichen Formänderungen. Ing.-Arch. 39(1), 63–72 (1970) CrossRef Bruhns, O.T.: Die Berücksichtigung einer isotropen Werkstoffverfestigung bei der elastisch-plastischen Blechbiegung mit endlichen Formänderungen. Ing.-Arch. 39(1), 63–72 (1970) CrossRef
37.
Zurück zum Zitat Bruhns, O.T.: Elastoplastische Scheibenbiegung bei endlichen Formänderungen. Z. Angew. Math. Mech. 51, T101–T103 (1971) Bruhns, O.T.: Elastoplastische Scheibenbiegung bei endlichen Formänderungen. Z. Angew. Math. Mech. 51, T101–T103 (1971)
38.
Zurück zum Zitat Bruhns, O.T., Thermann, K.: Elastisch-plastische Biegung eines Plattenstreifens bei endlichen Formänderungen. Ing.-Arch. 38(3), 141–152 (1969) CrossRef Bruhns, O.T., Thermann, K.: Elastisch-plastische Biegung eines Plattenstreifens bei endlichen Formänderungen. Ing.-Arch. 38(3), 141–152 (1969) CrossRef
39.
Zurück zum Zitat Bruhns, O.T., Xiao, H., Mayers, A.: Constitutive inequalities for an isotropic elastic strain energy function based on Hencky’s logarithmic strain tensor. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 457, 2207–2226 (2001) MATHADSCrossRef Bruhns, O.T., Xiao, H., Mayers, A.: Constitutive inequalities for an isotropic elastic strain energy function based on Hencky’s logarithmic strain tensor. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 457, 2207–2226 (2001) MATHADSCrossRef
40.
Zurück zum Zitat Bruhns, O.T., Xiao, H., Mayers, A.: Finite bending of a rectangular block of an elastic Hencky material. J. Elast. 66(3), 237–256 (2002) MATHCrossRefMathSciNet Bruhns, O.T., Xiao, H., Mayers, A.: Finite bending of a rectangular block of an elastic Hencky material. J. Elast. 66(3), 237–256 (2002) MATHCrossRefMathSciNet
41.
Zurück zum Zitat Bruhns, O.T., Xiao, H., Meyers, A.: Hencky’s elasticity model with the logarithmic strain measure: a study on Poynting effect and stress response in torsion of tubes and rods. Arch. Mech. 52(4), 489–509 (2000) MATHMathSciNet Bruhns, O.T., Xiao, H., Meyers, A.: Hencky’s elasticity model with the logarithmic strain measure: a study on Poynting effect and stress response in torsion of tubes and rods. Arch. Mech. 52(4), 489–509 (2000) MATHMathSciNet
42.
Zurück zum Zitat Buliga, M.: Four applications of majorization to convexity in the calculus of variations. Linear Algebra Appl. 429(7), 1528–1545 (2008) MATHMathSciNetCrossRef Buliga, M.: Four applications of majorization to convexity in the calculus of variations. Linear Algebra Appl. 429(7), 1528–1545 (2008) MATHMathSciNetCrossRef
43.
Zurück zum Zitat Cai, Z., Starke, G.: First-order system least squares for the stress-displacement formulation: linear elasticity. SIAM J. Numer. Anal. 41(2), 715–730 (2003) MATHMathSciNetCrossRef Cai, Z., Starke, G.: First-order system least squares for the stress-displacement formulation: linear elasticity. SIAM J. Numer. Anal. 41(2), 715–730 (2003) MATHMathSciNetCrossRef
45.
Zurück zum Zitat Carroll, M.M.: Controllable states of stress for compressible elastic solids. J. Elast. 3(1), 57–61 (1973) CrossRefMathSciNet Carroll, M.M.: Controllable states of stress for compressible elastic solids. J. Elast. 3(1), 57–61 (1973) CrossRefMathSciNet
46.
Zurück zum Zitat Carroll, M.M.: Must elastic materials be hyperelastic? Math. Mech. Solids 14(4), 369–376 (2009) MATHCrossRef Carroll, M.M.: Must elastic materials be hyperelastic? Math. Mech. Solids 14(4), 369–376 (2009) MATHCrossRef
47.
Zurück zum Zitat Chen, Y.C.: Stability and bifurcation of homogeneous deformations of a compressible elastic body under pressure load. Math. Mech. Solids 1(1), 57–72 (1996) MATHMathSciNet Chen, Y.C.: Stability and bifurcation of homogeneous deformations of a compressible elastic body under pressure load. Math. Mech. Solids 1(1), 57–72 (1996) MATHMathSciNet
48.
Zurück zum Zitat Ciarlet, P.G.: Three-Dimensional Elasticity, 1st edn. Studies in Mathematics and Its Applications, vol. 1. Elsevier, Amsterdam (1988) MATH Ciarlet, P.G.: Three-Dimensional Elasticity, 1st edn. Studies in Mathematics and Its Applications, vol. 1. Elsevier, Amsterdam (1988) MATH
49.
Zurück zum Zitat Cleja-Ţigoiu, S.: Yield criteria in anisotropic finite elasto-plasticity. Arch. Mech. 57(2–3), 81–102 (2005) MATHMathSciNet Cleja-Ţigoiu, S.: Yield criteria in anisotropic finite elasto-plasticity. Arch. Mech. 57(2–3), 81–102 (2005) MATHMathSciNet
50.
Zurück zum Zitat Cleja-Ţigoiu, S.: Consequences of the dissipative restrictions in finite anisotropic elasto-plasticity. Int. J. Plast. 19(11), 1917–1964 (2003) MATHCrossRef Cleja-Ţigoiu, S.: Consequences of the dissipative restrictions in finite anisotropic elasto-plasticity. Int. J. Plast. 19(11), 1917–1964 (2003) MATHCrossRef
51.
Zurück zum Zitat Criscione, J.C.: Direct tensor expression for natural strain and fast, accurate approximation. Compos. Struct. 80(25), 1895–1905 (2002) MathSciNetCrossRef Criscione, J.C.: Direct tensor expression for natural strain and fast, accurate approximation. Compos. Struct. 80(25), 1895–1905 (2002) MathSciNetCrossRef
52.
Zurück zum Zitat Criscione, J.C., Humphrey, J.D., Douglas, A.S., Hunter, W.C.: An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. J. Mech. Phys. Solids 48(12), 2445–2465 (2000) MATHADSCrossRef Criscione, J.C., Humphrey, J.D., Douglas, A.S., Hunter, W.C.: An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. J. Mech. Phys. Solids 48(12), 2445–2465 (2000) MATHADSCrossRef
53.
Zurück zum Zitat Curnier, A., Rakotomanana, L.: Generalized strain and stress measures, critical survey and new results. Eng. Trans. (Warsaw) 39, 461–538 (1991) MathSciNet Curnier, A., Rakotomanana, L.: Generalized strain and stress measures, critical survey and new results. Eng. Trans. (Warsaw) 39, 461–538 (1991) MathSciNet
54.
Zurück zum Zitat Dacorogna, B.: Necessary and sufficient conditions for strong ellipticity of isotropic functions in any dimension. Discrete Contin. Dyn. Syst. 1(2), 257–263 (2001) MATHMathSciNetCrossRef Dacorogna, B.: Necessary and sufficient conditions for strong ellipticity of isotropic functions in any dimension. Discrete Contin. Dyn. Syst. 1(2), 257–263 (2001) MATHMathSciNetCrossRef
55.
Zurück zum Zitat Dacorogna, B.: Direct Methods in the Calculus of Variations, 2nd edn. Applied Mathematical Sciences, vol. 78. Springer, Berlin (2008) MATH Dacorogna, B.: Direct Methods in the Calculus of Variations, 2nd edn. Applied Mathematical Sciences, vol. 78. Springer, Berlin (2008) MATH
56.
Zurück zum Zitat Dacorogna, B., Koshigoe, H.: On the different notions of convexity for rotationally invariant functions. Ann. Fac. Sci. Toulouse 2, 163–184 (1993) MATHMathSciNetCrossRef Dacorogna, B., Koshigoe, H.: On the different notions of convexity for rotationally invariant functions. Ann. Fac. Sci. Toulouse 2, 163–184 (1993) MATHMathSciNetCrossRef
57.
Zurück zum Zitat Dacorogna, B., Marcellini, P.: Implicit Partial Differential Equations. Birkhäuser, Boston (1999) MATHCrossRef Dacorogna, B., Marcellini, P.: Implicit Partial Differential Equations. Birkhäuser, Boston (1999) MATHCrossRef
58.
Zurück zum Zitat Dacorogna, B., Maréchal, P.: A note on spectrally defined polyconvex functions. In: Carozza, M., et al. (eds.) Proceedings of the Workshop “New Developments in the Calculus of Variations”, pp. 27–54. Edizioni Scientifiche Italiane, Napoli (2006) Dacorogna, B., Maréchal, P.: A note on spectrally defined polyconvex functions. In: Carozza, M., et al. (eds.) Proceedings of the Workshop “New Developments in the Calculus of Variations”, pp. 27–54. Edizioni Scientifiche Italiane, Napoli (2006)
60.
Zurück zum Zitat de Boer, R.: Die elastisch-plastische Biegung eines Plattenstreifens aus inkompressiblem Werkstoff bei endlichen Formänderungen. Ing.-Arch. 36(3), 145–154 (1967) CrossRef de Boer, R.: Die elastisch-plastische Biegung eines Plattenstreifens aus inkompressiblem Werkstoff bei endlichen Formänderungen. Ing.-Arch. 36(3), 145–154 (1967) CrossRef
61.
Zurück zum Zitat de Boer, R., Bruhns, O.T.: Zur Berechnung der Eigenspannungen bei einem durch endliche Biegung verformten inkompressiblen Plattenstreifen. Acta Mech. 8(3–4), 146–159 (1969) CrossRef de Boer, R., Bruhns, O.T.: Zur Berechnung der Eigenspannungen bei einem durch endliche Biegung verformten inkompressiblen Plattenstreifen. Acta Mech. 8(3–4), 146–159 (1969) CrossRef
62.
Zurück zum Zitat dell’Isola, F., Ruta, G.C., Batra, R.C.: A second-order solution of Saint-Venant’s problem for an elastic pretwisted bar using Signorini’s perturbation method. J. Elast. 49(2), 113–127 (1997) MathSciNetCrossRefMATH dell’Isola, F., Ruta, G.C., Batra, R.C.: A second-order solution of Saint-Venant’s problem for an elastic pretwisted bar using Signorini’s perturbation method. J. Elast. 49(2), 113–127 (1997) MathSciNetCrossRefMATH
63.
Zurück zum Zitat dell’Isola, F., Ruta, G.C., Batra, R.C.: Generalized Poynting effects in predeformed prismatic bars. J. Elast. 50(2), 181–196 (1998) MATHMathSciNetCrossRef dell’Isola, F., Ruta, G.C., Batra, R.C.: Generalized Poynting effects in predeformed prismatic bars. J. Elast. 50(2), 181–196 (1998) MATHMathSciNetCrossRef
64.
Zurück zum Zitat Destrade, M., Murphy, J., Saccomandi, G.: Simple shear is not so simple. Int. J. Non-Linear Mech. 47(2), 210–214 (2012) ADSCrossRef Destrade, M., Murphy, J., Saccomandi, G.: Simple shear is not so simple. Int. J. Non-Linear Mech. 47(2), 210–214 (2012) ADSCrossRef
65.
Zurück zum Zitat Diani, J., Gilormini, P.: Combining the logarithmic strain and the full-network model for a better understanding of the hyperelastic behavior of rubber-like materials. J. Mech. Phys. Solids 53(11), 2579–2596 (2005) MATHADSCrossRef Diani, J., Gilormini, P.: Combining the logarithmic strain and the full-network model for a better understanding of the hyperelastic behavior of rubber-like materials. J. Mech. Phys. Solids 53(11), 2579–2596 (2005) MATHADSCrossRef
66.
Zurück zum Zitat Dłużewski, P.: Anisotropic hyperelasticity based upon general strain measures. J. Elast. 60(2), 119–129 (2000) MATHCrossRef Dłużewski, P.: Anisotropic hyperelasticity based upon general strain measures. J. Elast. 60(2), 119–129 (2000) MATHCrossRef
67.
Zurück zum Zitat Dłuzewski, P., Jurczak, G., Antúnez, H.: Logarithmic measure of strains in finite element modelling of anisotropic deformations of elastic solids. Comput. Assist. Mech. Eng. Sci. 10, 69–79 (2003) MATH Dłuzewski, P., Jurczak, G., Antúnez, H.: Logarithmic measure of strains in finite element modelling of anisotropic deformations of elastic solids. Comput. Assist. Mech. Eng. Sci. 10, 69–79 (2003) MATH
68.
Zurück zum Zitat Dłużewski, P., Traczykowski, P.: Numerical simulation of atomic positions in quantum dot by means of molecular statics. Arch. Mech. 55(5–6), 393–406 (2003) MATH Dłużewski, P., Traczykowski, P.: Numerical simulation of atomic positions in quantum dot by means of molecular statics. Arch. Mech. 55(5–6), 393–406 (2003) MATH
69.
Zurück zum Zitat Dui, G.S.: Some basis-free formulae for the time rate and conjugate stress of logarithmic strain tensor. J. Elast. 83(2), 113–151 (2006) MATHMathSciNetCrossRef Dui, G.S.: Some basis-free formulae for the time rate and conjugate stress of logarithmic strain tensor. J. Elast. 83(2), 113–151 (2006) MATHMathSciNetCrossRef
70.
Zurück zum Zitat Ebbing, V., Schröder, J., Neff, P.: Approximation of anisotropic elasticity tensors at the reference state with polyconvex energies. Arch. Appl. Mech. 79, 651–657 (2009) MATHADSCrossRef Ebbing, V., Schröder, J., Neff, P.: Approximation of anisotropic elasticity tensors at the reference state with polyconvex energies. Arch. Appl. Mech. 79, 651–657 (2009) MATHADSCrossRef
71.
Zurück zum Zitat Edelstein, W., Fosdick, R.: A note on non-uniqueness in linear elasticity theory. Z. Angew. Math. Phys. 19(6), 906–912 (1968) MATHMathSciNetCrossRef Edelstein, W., Fosdick, R.: A note on non-uniqueness in linear elasticity theory. Z. Angew. Math. Phys. 19(6), 906–912 (1968) MATHMathSciNetCrossRef
73.
Zurück zum Zitat Fiala, Z.: Time derivative obtained by applying the Riemannian manifold of Riemannian metrics to kinematics of continua. C. R., Méc. 332(2), 97–102 (2004) MATHCrossRef Fiala, Z.: Time derivative obtained by applying the Riemannian manifold of Riemannian metrics to kinematics of continua. C. R., Méc. 332(2), 97–102 (2004) MATHCrossRef
74.
Zurück zum Zitat Fiala, Z.: Geometry of finite deformations, linearization, and incremental deformations under initial stress/strain. In: Proceedings of International Conference Engineering Mechanics 2008 (2008). 20 pp. Fiala, Z.: Geometry of finite deformations, linearization, and incremental deformations under initial stress/strain. In: Proceedings of International Conference Engineering Mechanics 2008 (2008). 20 pp.
75.
Zurück zum Zitat Fiala, Z.: Logarithmic strain in 1 versus 3(2) dimensions. In: Proceedings of International Conference Engineering Mechanics 2010 (2010) 11 pp. Fiala, Z.: Logarithmic strain in 1 versus 3(2) dimensions. In: Proceedings of International Conference Engineering Mechanics 2010 (2010) 11 pp.
77.
Zurück zum Zitat Fitzgerald, J.E.: A tensorial Hencky measure of strain and strain rate for finite deformations. J. Appl. Phys. 51, 5111–5115 (1980) ADSCrossRef Fitzgerald, J.E.: A tensorial Hencky measure of strain and strain rate for finite deformations. J. Appl. Phys. 51, 5111–5115 (1980) ADSCrossRef
78.
79.
81.
Zurück zum Zitat Fosdick, R., Volkmann, E.: Normality and convexity of the yield surface in nonlinear plasticity. Q. Appl. Math. 51, 117–127 (1993) MATHMathSciNet Fosdick, R., Volkmann, E.: Normality and convexity of the yield surface in nonlinear plasticity. Q. Appl. Math. 51, 117–127 (1993) MATHMathSciNet
82.
Zurück zum Zitat Freed, A.D.: Natural strain. J. Eng. Mater. Technol. 117(4), 379–385 (1995) CrossRef Freed, A.D.: Natural strain. J. Eng. Mater. Technol. 117(4), 379–385 (1995) CrossRef
83.
Zurück zum Zitat Freed, A.D.: Hencky strain and logarithmic rates in Lagrangian analysis. Int. J. Eng. Sci. 81, 135–145 (2014) MathSciNetCrossRef Freed, A.D.: Hencky strain and logarithmic rates in Lagrangian analysis. Int. J. Eng. Sci. 81, 135–145 (2014) MathSciNetCrossRef
84.
Zurück zum Zitat Fu, Y.B., Ogden, R.W.: Nonlinear Elasticity: Theory and Applications, vol. 281. Cambridge University Press, Cambridge (2001) CrossRefMATH Fu, Y.B., Ogden, R.W.: Nonlinear Elasticity: Theory and Applications, vol. 281. Cambridge University Press, Cambridge (2001) CrossRefMATH
85.
Zurück zum Zitat Fung, Y.C.: Inversion of a class of nonlinear stress-strain relationships of biological soft tissues. J. Biomech. Eng. 101(1), 23–27 (1979) CrossRef Fung, Y.C.: Inversion of a class of nonlinear stress-strain relationships of biological soft tissues. J. Biomech. Eng. 101(1), 23–27 (1979) CrossRef
86.
Zurück zum Zitat Gao, X.L.: Finite deformation elasto-plastic solution for the pure bending problem of a wide plate of elastic linear-hardening material. Int. J. Solids Struct. 31(10), 1357–1376 (1994) MATHCrossRef Gao, X.L.: Finite deformation elasto-plastic solution for the pure bending problem of a wide plate of elastic linear-hardening material. Int. J. Solids Struct. 31(10), 1357–1376 (1994) MATHCrossRef
87.
Zurück zum Zitat Gao, X.L.: Finite deformation continuum model for single-walled carbon nanotubes. Int. J. Solids Struct. 40(26), 7329–7337 (2003) MATHCrossRef Gao, X.L.: Finite deformation continuum model for single-walled carbon nanotubes. Int. J. Solids Struct. 40(26), 7329–7337 (2003) MATHCrossRef
88.
Zurück zum Zitat Gao, X.L., Atluri, S.N.: An exact finite deformation elasto-plastic solution for the outside-in free eversion problem of a tube of elastic linear-hardening material. IMA J. Appl. Math. 58(3), 259–275 (1997) MATHMathSciNetADSCrossRef Gao, X.L., Atluri, S.N.: An exact finite deformation elasto-plastic solution for the outside-in free eversion problem of a tube of elastic linear-hardening material. IMA J. Appl. Math. 58(3), 259–275 (1997) MATHMathSciNetADSCrossRef
89.
Zurück zum Zitat Gearing, B.P., Anand, L.: Notch-sensitive fracture of polycarbonate. Int. J. Solids Struct. 41(3), 827–845 (2004) MATHCrossRef Gearing, B.P., Anand, L.: Notch-sensitive fracture of polycarbonate. Int. J. Solids Struct. 41(3), 827–845 (2004) MATHCrossRef
90.
Zurück zum Zitat Germain, S., Scherer, M., Steinmann, P.: On inverse form finding for anisotropic hyperelasticity in logarithmic strain space. Int. J. Struct. Chang. Solids - Mech. Appl. 2(2), 1–16 (2010) Germain, S., Scherer, M., Steinmann, P.: On inverse form finding for anisotropic hyperelasticity in logarithmic strain space. Int. J. Struct. Chang. Solids - Mech. Appl. 2(2), 1–16 (2010)
91.
Zurück zum Zitat Ghiba, I.D., Müller, B., Neff, P., Starke, G.: On the stress-strain invertibility in nonlinear elasticity (2015, in preparation) Ghiba, I.D., Müller, B., Neff, P., Starke, G.: On the stress-strain invertibility in nonlinear elasticity (2015, in preparation)
92.
Zurück zum Zitat Glüge, R., Kalisch, J.: Graphical representations of the regions of rank-one-convexity of some strain energies. Tech. Mech. 32, 227–237 (2012) Glüge, R., Kalisch, J.: Graphical representations of the regions of rank-one-convexity of some strain energies. Tech. Mech. 32, 227–237 (2012)
93.
Zurück zum Zitat Gurtin, M.E., Spear, K.: On the relationship between the logarithmic strain rate and the stretching tensor. Int. J. Solids Struct. 19(5), 437–444 (1983) MATHMathSciNetCrossRef Gurtin, M.E., Spear, K.: On the relationship between the logarithmic strain rate and the stretching tensor. Int. J. Solids Struct. 19(5), 437–444 (1983) MATHMathSciNetCrossRef
94.
Zurück zum Zitat Hanin, M., Reiner, M.: On isotropic tensor-functions and the measure of deformation. Z. Angew. Math. Phys. 7(5), 377–393 (1956) MATHMathSciNetCrossRef Hanin, M., Reiner, M.: On isotropic tensor-functions and the measure of deformation. Z. Angew. Math. Phys. 7(5), 377–393 (1956) MATHMathSciNetCrossRef
96.
Zurück zum Zitat Hartmann, S., Neff, P.: Polyconvexity of generalized polynomial type hyperelastic strain energy functions for near incompressibility. Int. J. Solids Struct. 40(11), 2767–2791 (2003) MATHMathSciNetCrossRef Hartmann, S., Neff, P.: Polyconvexity of generalized polynomial type hyperelastic strain energy functions for near incompressibility. Int. J. Solids Struct. 40(11), 2767–2791 (2003) MATHMathSciNetCrossRef
97.
Zurück zum Zitat Henann, D.L., Anand, L.: Fracture of metallic glasses at notches: effects of notch-root radius and the ratio of the elastic shear modulus to the bulk modulus on toughness. Acta Mater. 57(20), 6057–6074 (2009) CrossRef Henann, D.L., Anand, L.: Fracture of metallic glasses at notches: effects of notch-root radius and the ratio of the elastic shear modulus to the bulk modulus on toughness. Acta Mater. 57(20), 6057–6074 (2009) CrossRef
98.
Zurück zum Zitat Henann, D.L., Anand, L.: A large strain isotropic elasticity model based on molecular dynamics simulations of a metallic glass. J. Elast. 104(1–2), 281–302 (2011) MATHMathSciNetCrossRef Henann, D.L., Anand, L.: A large strain isotropic elasticity model based on molecular dynamics simulations of a metallic glass. J. Elast. 104(1–2), 281–302 (2011) MATHMathSciNetCrossRef
99.
Zurück zum Zitat Hencky, H.: Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannungen. Z. Angew. Math. Mech. 4(4), 323–334 (1924) CrossRefMATH Hencky, H.: Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannungen. Z. Angew. Math. Mech. 4(4), 323–334 (1924) CrossRefMATH
105.
Zurück zum Zitat Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc., Math. Phys. Eng. Sci. 193(1033), 281–297 (1948) MATHADSCrossRefMathSciNet Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc., Math. Phys. Eng. Sci. 193(1033), 281–297 (1948) MATHADSCrossRefMathSciNet
106.
Zurück zum Zitat Hill, R.: The Mathematical Theory of Plasticity. Clarendon, Oxford (1950) MATH Hill, R.: The Mathematical Theory of Plasticity. Clarendon, Oxford (1950) MATH
107.
Zurück zum Zitat Hill, R.: On constitutive inequalities for simple materials—I. J. Mech. Phys. Solids 16(4), 229–242 (1968) MATHADSCrossRef Hill, R.: On constitutive inequalities for simple materials—I. J. Mech. Phys. Solids 16(4), 229–242 (1968) MATHADSCrossRef
108.
Zurück zum Zitat Hill, R.: Constitutive inequalities for isotropic elastic solids under finite strain. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 314(1519), 457–472 (1970) MATHADSCrossRef Hill, R.: Constitutive inequalities for isotropic elastic solids under finite strain. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 314(1519), 457–472 (1970) MATHADSCrossRef
110.
Zurück zum Zitat Hill, R.: On the theory of plane strain in finitely deformed compressible materials. Math. Proc. Camb. Philos. Soc. 86, 161–178 (1979) MATHCrossRefMathSciNet Hill, R.: On the theory of plane strain in finitely deformed compressible materials. Math. Proc. Camb. Philos. Soc. 86, 161–178 (1979) MATHCrossRefMathSciNet
111.
Zurück zum Zitat Hocine, B., Chevalier, L., Idjeri, M.: A constitutive model for isotropic rubber-like materials based on the logarithmic strain invariants approach (2014, submitted) Hocine, B., Chevalier, L., Idjeri, M.: A constitutive model for isotropic rubber-like materials based on the logarithmic strain invariants approach (2014, submitted)
112.
114.
Zurück zum Zitat Horgan, C., Murphy, J.: Constitutive modeling for moderate deformations of slightly compressible rubber. J. Rheol. 53, 153 (2009) ADSCrossRef Horgan, C., Murphy, J.: Constitutive modeling for moderate deformations of slightly compressible rubber. J. Rheol. 53, 153 (2009) ADSCrossRef
115.
Zurück zum Zitat Horgan, C., Murphy, J.: On the volumetric part of strain-energy functions used in the constitutive modeling of slightly compressible solid rubbers. Int. J. Solids Struct. 46(16), 3078–3085 (2009) MATHCrossRef Horgan, C., Murphy, J.: On the volumetric part of strain-energy functions used in the constitutive modeling of slightly compressible solid rubbers. Int. J. Solids Struct. 46(16), 3078–3085 (2009) MATHCrossRef
118.
Zurück zum Zitat Jog, C.S.: Foundations and Applications of Mechanics: Continuum Mechanics, vol. 1. CRC Press, Boca Raton (2002) Jog, C.S.: Foundations and Applications of Mechanics: Continuum Mechanics, vol. 1. CRC Press, Boca Raton (2002)
119.
Zurück zum Zitat Jog, C.S.: On the explicit determination of the polar decomposition in n-dimensional vector spaces. J. Elast. 66(2), 159–169 (2002) MATHMathSciNetCrossRef Jog, C.S.: On the explicit determination of the polar decomposition in n-dimensional vector spaces. J. Elast. 66(2), 159–169 (2002) MATHMathSciNetCrossRef
120.
121.
Zurück zum Zitat Jog, C.S., Patil, K.D.: Conditions for the onset of elastic and material instabilities in hyperelastic materials. Arch. Appl. Mech. 83, 1–24 (2013) CrossRefMATH Jog, C.S., Patil, K.D.: Conditions for the onset of elastic and material instabilities in hyperelastic materials. Arch. Appl. Mech. 83, 1–24 (2013) CrossRefMATH
122.
123.
Zurück zum Zitat Jones, D.F., Treloar, L.R.G.: The properties of rubber in pure homogeneous strain. J. Phys. D, Appl. Phys. 8(11), 1285 (1975) ADSCrossRef Jones, D.F., Treloar, L.R.G.: The properties of rubber in pure homogeneous strain. J. Phys. D, Appl. Phys. 8(11), 1285 (1975) ADSCrossRef
124.
Zurück zum Zitat Kakavas, P.A.: Prediction of the nonlinear Poisson function using large volumetric strains estimated from a finite hyperelastic material law. Polym. Eng. Sci. 40(6), 1330–1333 (2000) CrossRef Kakavas, P.A.: Prediction of the nonlinear Poisson function using large volumetric strains estimated from a finite hyperelastic material law. Polym. Eng. Sci. 40(6), 1330–1333 (2000) CrossRef
125.
Zurück zum Zitat Kearsley, E.A.: Asymmetric stretching of a symmetrically loaded elastic sheet. Int. J. Solids Struct. 22(2), 111–119 (1986) CrossRef Kearsley, E.A.: Asymmetric stretching of a symmetrically loaded elastic sheet. Int. J. Solids Struct. 22(2), 111–119 (1986) CrossRef
126.
127.
Zurück zum Zitat Knowles, J.K., Sternberg, E.: On the ellipticity of the equations of nonlinear elastostatics for a special material. J. Elast. 5(3–4), 341–361 (1975) MATHMathSciNetCrossRef Knowles, J.K., Sternberg, E.: On the ellipticity of the equations of nonlinear elastostatics for a special material. J. Elast. 5(3–4), 341–361 (1975) MATHMathSciNetCrossRef
128.
Zurück zum Zitat Knowles, J.K., Sternberg, E.: On the failure of ellipticity of the equations for finite elastostatic plane strain. Arch. Ration. Mech. Anal. 63(4), 321–336 (1976) MathSciNetCrossRefMATH Knowles, J.K., Sternberg, E.: On the failure of ellipticity of the equations for finite elastostatic plane strain. Arch. Ration. Mech. Anal. 63(4), 321–336 (1976) MathSciNetCrossRefMATH
129.
Zurück zum Zitat Knowles, J.K., Sternberg, E.: On the failure of ellipticity and the emergence of discontinuous deformation gradients in plane finite elastostatics. J. Elast. 8(4), 329–379 (1978) MATHMathSciNetCrossRef Knowles, J.K., Sternberg, E.: On the failure of ellipticity and the emergence of discontinuous deformation gradients in plane finite elastostatics. J. Elast. 8(4), 329–379 (1978) MATHMathSciNetCrossRef
130.
Zurück zum Zitat Kochkin, A.P.: Stress-strain dependence in the nonlinear theory of elasticity. Indian J. Pure Appl. Math. 17(4), 564–579 (1986) MATHMathSciNet Kochkin, A.P.: Stress-strain dependence in the nonlinear theory of elasticity. Indian J. Pure Appl. Math. 17(4), 564–579 (1986) MATHMathSciNet
131.
Zurück zum Zitat Krawietz, A.: A comprehensive constitutive inequality in finite elastic strain. Arch. Ration. Mech. Anal. 58, 127–149 (1975) MATHMathSciNetCrossRef Krawietz, A.: A comprehensive constitutive inequality in finite elastic strain. Arch. Ration. Mech. Anal. 58, 127–149 (1975) MATHMathSciNetCrossRef
132.
Zurück zum Zitat Lankeit, J., Neff, P., Nakatsukasa, Y.: The minimization of matrix logarithms: on a fundamental property of the unitary polar factor. Linear Algebra Appl. 449(0), 28–42 (2014) MATHMathSciNetCrossRef Lankeit, J., Neff, P., Nakatsukasa, Y.: The minimization of matrix logarithms: on a fundamental property of the unitary polar factor. Linear Algebra Appl. 449(0), 28–42 (2014) MATHMathSciNetCrossRef
133.
134.
Zurück zum Zitat Lehmich, S., Neff, P., Lankeit, J.: On the convexity of the function C→f(detC) on positive definite matrices. Math. Mech. Solids 19, 369–375 (2014) MATHMathSciNetCrossRef Lehmich, S., Neff, P., Lankeit, J.: On the convexity of the function Cf(detC) on positive definite matrices. Math. Mech. Solids 19, 369–375 (2014) MATHMathSciNetCrossRef
136.
Zurück zum Zitat Lewis, A.S.: The mathematics of eigenvalue optimization. Math. Program., Ser. B 97(1–2), 155–176 (2003) MATHMathSciNet Lewis, A.S.: The mathematics of eigenvalue optimization. Math. Program., Ser. B 97(1–2), 155–176 (2003) MATHMathSciNet
139.
Zurück zum Zitat Lurie, A.I.: Non-linear Theory of Elasticity. Elsevier, Amsterdam (1990) MATH Lurie, A.I.: Non-linear Theory of Elasticity. Elsevier, Amsterdam (1990) MATH
140.
Zurück zum Zitat Marsden, J.E., Hughes, J.R.: Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs (1983) MATH Marsden, J.E., Hughes, J.R.: Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs (1983) MATH
141.
Zurück zum Zitat Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and Its Applications. Springer Series in Statistics. Springer, Berlin (2011) CrossRefMATH Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and Its Applications. Springer Series in Statistics. Springer, Berlin (2011) CrossRefMATH
142.
Zurück zum Zitat Martin, R., Neff, P.: Some remarks on monotonicity of primary matrix functions on the set of symmetric matrices. Arch. Appl. Mech. (2015, accepted) Martin, R., Neff, P.: Some remarks on monotonicity of primary matrix functions on the set of symmetric matrices. Arch. Appl. Mech. (2015, accepted)
143.
Zurück zum Zitat Marzano, S.: An interpretation of Baker-Ericksen inequalities in uniaxial deformation and stress. Meccanica 18(4), 233–235 (1983) MATHMathSciNetCrossRef Marzano, S.: An interpretation of Baker-Ericksen inequalities in uniaxial deformation and stress. Meccanica 18(4), 233–235 (1983) MATHMathSciNetCrossRef
144.
Zurück zum Zitat Merodio, J., Neff, P.: A note on tensile instabilities and loss of ellipticity for a fiber-reinforced nonlinearly elastic solid. Arch. Mech. 58(3), 293–303 (2006) MATHMathSciNet Merodio, J., Neff, P.: A note on tensile instabilities and loss of ellipticity for a fiber-reinforced nonlinearly elastic solid. Arch. Mech. 58(3), 293–303 (2006) MATHMathSciNet
147.
Zurück zum Zitat Meyers, A., Xiao, H., Bruhns, O.T.: Choice of objective rate in single parameter hypoelastic deformation cycles. Compos. Struct. 84(17), 1134–1140 (2006) CrossRef Meyers, A., Xiao, H., Bruhns, O.T.: Choice of objective rate in single parameter hypoelastic deformation cycles. Compos. Struct. 84(17), 1134–1140 (2006) CrossRef
148.
Zurück zum Zitat Miehe, C., Apel, N., Lambrecht, M.: Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials. Comput. Methods Appl. Mech. Eng. 191(47), 5383–5425 (2002) MATHMathSciNetADSCrossRef Miehe, C., Apel, N., Lambrecht, M.: Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials. Comput. Methods Appl. Mech. Eng. 191(47), 5383–5425 (2002) MATHMathSciNetADSCrossRef
149.
Zurück zum Zitat Miehe, C., Méndez Diez, J., Göktepe, S., Schänzel, L.M.: Coupled thermoviscoplasticity of glassy polymers in the logarithmic strain space based on the free volume theory. Int. J. Solids Struct. 48(13), 1799–1817 (2011) CrossRef Miehe, C., Méndez Diez, J., Göktepe, S., Schänzel, L.M.: Coupled thermoviscoplasticity of glassy polymers in the logarithmic strain space based on the free volume theory. Int. J. Solids Struct. 48(13), 1799–1817 (2011) CrossRef
150.
Zurück zum Zitat Miehe, C., Göktepe, S., Méndez Diez, J.: Finite viscoplasticity of amorphous glassy polymers in the logarithmic strain space. Int. J. Solids Struct. 46, 181–202 (2009) MATHCrossRef Miehe, C., Göktepe, S., Méndez Diez, J.: Finite viscoplasticity of amorphous glassy polymers in the logarithmic strain space. Int. J. Solids Struct. 46, 181–202 (2009) MATHCrossRef
151.
Zurück zum Zitat Mielke, A.: Finite elastoplasticity, Lie groups and geodesics on SL(d). In: Newton, P. (ed.) Geometry, Mechanics and Dynamics. Volume in Honour of the 60th Birthday of J.E. Marsden, pp. 61–90. Springer, Berlin (2002) Mielke, A.: Finite elastoplasticity, Lie groups and geodesics on SL(d). In: Newton, P. (ed.) Geometry, Mechanics and Dynamics. Volume in Honour of the 60th Birthday of J.E. Marsden, pp. 61–90. Springer, Berlin (2002)
152.
Zurück zum Zitat Mielke, A.: Necessary and sufficient conditions for polyconvexity of isotropic functions. J. Convex Anal. 12(2), 291–314 (2005) MATHMathSciNet Mielke, A.: Necessary and sufficient conditions for polyconvexity of isotropic functions. J. Convex Anal. 12(2), 291–314 (2005) MATHMathSciNet
153.
Zurück zum Zitat Mihai, A., Goriely, A.: Positive or negative Poynting effect? The role of adscititious inequalities in hyperelastic materials. Proc. R. Soc. Lond. 467(2136), 3633–3646 (2011) MATHMathSciNetADSCrossRef Mihai, A., Goriely, A.: Positive or negative Poynting effect? The role of adscititious inequalities in hyperelastic materials. Proc. R. Soc. Lond. 467(2136), 3633–3646 (2011) MATHMathSciNetADSCrossRef
154.
Zurück zum Zitat Mihai, A., Goriely, A.: Numerical simulation of shear and the Poynting effects by the finite element method: an application of the generalised empirical inequalities in non-linear elasticity. Int. J. Non-Linear Mech. 49, 1–14 (2013) CrossRef Mihai, A., Goriely, A.: Numerical simulation of shear and the Poynting effects by the finite element method: an application of the generalised empirical inequalities in non-linear elasticity. Int. J. Non-Linear Mech. 49, 1–14 (2013) CrossRef
156.
Zurück zum Zitat Moakher, M.: A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 26(3), 735–747 (2005) MATHMathSciNetCrossRef Moakher, M.: A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 26(3), 735–747 (2005) MATHMathSciNetCrossRef
157.
Zurück zum Zitat Moon, H., Truesdell, C.: Interpretation of adscititious inequalities through the effects pure shear stress produces upon an isotropic elastic solid. Arch. Ration. Mech. Anal. 55(1), 1–17 (1974) MATHMathSciNetCrossRef Moon, H., Truesdell, C.: Interpretation of adscititious inequalities through the effects pure shear stress produces upon an isotropic elastic solid. Arch. Ration. Mech. Anal. 55(1), 1–17 (1974) MATHMathSciNetCrossRef
158.
159.
Zurück zum Zitat Mott, P.H., Roland, C.M.: Limits to Poisson’s ratio in isotropic materials. Phys. Rev. B 80(13), 132104 (2009), 4 pp. ADSCrossRef Mott, P.H., Roland, C.M.: Limits to Poisson’s ratio in isotropic materials. Phys. Rev. B 80(13), 132104 (2009), 4 pp. ADSCrossRef
160.
Zurück zum Zitat Müller, Ch., Bruhns, O.T.: A thermodynamic finite-strain model for pseudoelastic shape memory alloys. Int. J. Plast. 22(9), 1658–1682 (2006) MATHCrossRef Müller, Ch., Bruhns, O.T.: A thermodynamic finite-strain model for pseudoelastic shape memory alloys. Int. J. Plast. 22(9), 1658–1682 (2006) MATHCrossRef
163.
164.
Zurück zum Zitat Nadai, A.: Plastic behavior of metals in the strain-hardening range. Part I. J. Appl. Phys. 8(3), 205–213 (1937) MATHADSCrossRef Nadai, A.: Plastic behavior of metals in the strain-hardening range. Part I. J. Appl. Phys. 8(3), 205–213 (1937) MATHADSCrossRef
166.
Zurück zum Zitat Neff, P.: Some results concerning the mathematical treatment of finite plasticity. In: Deformation and Failure in Metallic Materials, pp. 251–274. Springer, Berlin (2003) CrossRef Neff, P.: Some results concerning the mathematical treatment of finite plasticity. In: Deformation and Failure in Metallic Materials, pp. 251–274. Springer, Berlin (2003) CrossRef
167.
Zurück zum Zitat Neff, P.: Critique of “Two-dimensional examples of rank-one convex functions that are not quasiconvex” by M.K. Benaouda and J.J. Telega. Ann. Pol. Math. 86(2), 193–195 (2005) MATHMathSciNetCrossRef Neff, P.: Critique of “Two-dimensional examples of rank-one convex functions that are not quasiconvex” by M.K. Benaouda and J.J. Telega. Ann. Pol. Math. 86(2), 193–195 (2005) MATHMathSciNetCrossRef
168.
Zurück zum Zitat Neff, P.: A finite-strain elastic-plastic Cosserat theory for polycrystals with grain rotations. Int. J. Eng. Sci. 44, 574–594 (2006) MATHMathSciNetCrossRef Neff, P.: A finite-strain elastic-plastic Cosserat theory for polycrystals with grain rotations. Int. J. Eng. Sci. 44, 574–594 (2006) MATHMathSciNetCrossRef
169.
Zurück zum Zitat Neff, P., Eidel, B., Martin, R.: The axiomatic deduction of the quadratic Hencky strain energy by Heinrich Hencky (a new translation of Hencky’s original German articles) (2014). arXiv:1402.4027 Neff, P., Eidel, B., Martin, R.: The axiomatic deduction of the quadratic Hencky strain energy by Heinrich Hencky (a new translation of Hencky’s original German articles) (2014). arXiv:​1402.​4027
170.
Zurück zum Zitat Neff, P., Eidel, B., Martin, R.: Geometry of logarithmic strain measures in solid mechanics. The Hencky energy is the squared geodesic distance of the deformation gradient to SO(n) in any left-invariant, right-O(n)-invariant Riemannian metric on GL(n) (2015, in preparation) Neff, P., Eidel, B., Martin, R.: Geometry of logarithmic strain measures in solid mechanics. The Hencky energy is the squared geodesic distance of the deformation gradient to SO(n) in any left-invariant, right-O(n)-invariant Riemannian metric on GL(n) (2015, in preparation)
171.
Zurück zum Zitat Neff, P., Eidel, B., Osterbrink, F., Martin, R.: The Hencky strain energy ∥logU∥2 measures the geodesic distance of the deformation gradient to SO(3) in the canonical left-invariant Riemannian metric on GL(3). PAMM 13(1), 369–370 (2013) CrossRef Neff, P., Eidel, B., Osterbrink, F., Martin, R.: The Hencky strain energy ∥logU2 measures the geodesic distance of the deformation gradient to SO(3) in the canonical left-invariant Riemannian metric on GL(3). PAMM 13(1), 369–370 (2013) CrossRef
172.
Zurück zum Zitat Neff, P., Eidel, B., Osterbrink, F., Martin, R.: A Riemannian approach to strain measures in nonlinear elasticity. C. R. Acad. Sci. 342, 254–257 (2014) Neff, P., Eidel, B., Osterbrink, F., Martin, R.: A Riemannian approach to strain measures in nonlinear elasticity. C. R. Acad. Sci. 342, 254–257 (2014)
173.
Zurück zum Zitat Neff, P., Ghiba, I.D.: The exponentiated Hencky-logarithmic strain energy. Part III: Coupling with idealized isotropic finite strain plasticity. Contin. Mech. Thermodyn., the special issue in honour of D.J. Steigmann (2015, to appear). arXiv:1409.7555 Neff, P., Ghiba, I.D.: The exponentiated Hencky-logarithmic strain energy. Part III: Coupling with idealized isotropic finite strain plasticity. Contin. Mech. Thermodyn., the special issue in honour of D.J. Steigmann (2015, to appear). arXiv:​1409.​7555
174.
Zurück zum Zitat Neff, P., Jeong, J., Fischle, A.: Stable identification of linear isotropic Cosserat parameters: bounded stiffness in bending and torsion implies conformal invariance of curvature. Acta Mech. 211(3–4), 237–249 (2010) MATHCrossRef Neff, P., Jeong, J., Fischle, A.: Stable identification of linear isotropic Cosserat parameters: bounded stiffness in bending and torsion implies conformal invariance of curvature. Acta Mech. 211(3–4), 237–249 (2010) MATHCrossRef
175.
Zurück zum Zitat Neff, P., Lankeit, J., Madeo, A.: On Grioli’s minimum property and its relation to Cauchy’s polar decomposition. Int. J. Eng. Sci. 80, 207–217 (2014) MathSciNetCrossRef Neff, P., Lankeit, J., Madeo, A.: On Grioli’s minimum property and its relation to Cauchy’s polar decomposition. Int. J. Eng. Sci. 80, 207–217 (2014) MathSciNetCrossRef
177.
Zurück zum Zitat Neff, P., Nakatsukasa, Y., Fischle, A.: A logarithmic minimization property of the unitary polar factor in the spectral norm and the Frobenius matrix norm. SIAM J. Matrix Anal. Appl. 35, 1132–1154 (2014) MATHMathSciNetCrossRef Neff, P., Nakatsukasa, Y., Fischle, A.: A logarithmic minimization property of the unitary polar factor in the spectral norm and the Frobenius matrix norm. SIAM J. Matrix Anal. Appl. 35, 1132–1154 (2014) MATHMathSciNetCrossRef
178.
179.
Zurück zum Zitat Ogden, R.W.: Compressible isotropic elastic solids under finite strain-constitutive inequalities. Q. J. Mech. Appl. Math. 23(4), 457–468 (1970) MATHCrossRef Ogden, R.W.: Compressible isotropic elastic solids under finite strain-constitutive inequalities. Q. J. Mech. Appl. Math. 23(4), 457–468 (1970) MATHCrossRef
180.
Zurück zum Zitat Ogden, R.W.: On constitutive relations for elastic and plastic materials. Ph.D. Thesis, Cambridge University (1970) Ogden, R.W.: On constitutive relations for elastic and plastic materials. Ph.D. Thesis, Cambridge University (1970)
181.
Zurück zum Zitat Ogden, R.W.: Inequalities associated with the inversion of elastic stress-deformation relations and their implications. Math. Proc. Camb. Philos. Soc. 81, 313–324 (1977) MATHMathSciNetCrossRef Ogden, R.W.: Inequalities associated with the inversion of elastic stress-deformation relations and their implications. Math. Proc. Camb. Philos. Soc. 81, 313–324 (1977) MATHMathSciNetCrossRef
182.
Zurück zum Zitat Ogden, R.W.: Non-linear Elastic Deformations, 1st edn. Mathematics and Its Applications. Ellis Horwood, Chichester (1983) Ogden, R.W.: Non-linear Elastic Deformations, 1st edn. Mathematics and Its Applications. Ellis Horwood, Chichester (1983)
183.
Zurück zum Zitat Ogden, R.W., Saccomandi, G., Sgura, I.: Fitting hyperelastic models to experimental data. Comput. Mech. 34(6), 484–502 (2004) MATHCrossRef Ogden, R.W., Saccomandi, G., Sgura, I.: Fitting hyperelastic models to experimental data. Comput. Mech. 34(6), 484–502 (2004) MATHCrossRef
184.
Zurück zum Zitat Onaka, S.: Equivalent strain in simple shear deformation described by using the Hencky strain. Philos. Mag. Lett. 90(9), 633–639 (2010) ADSCrossRef Onaka, S.: Equivalent strain in simple shear deformation described by using the Hencky strain. Philos. Mag. Lett. 90(9), 633–639 (2010) ADSCrossRef
185.
Zurück zum Zitat Onaka, S.: Appropriateness of the Hencky equivalent strain as the quantity to represent the degree of severe plastic deformation. Mater. Trans. 53(8), 1547–1548 (2012) CrossRef Onaka, S.: Appropriateness of the Hencky equivalent strain as the quantity to represent the degree of severe plastic deformation. Mater. Trans. 53(8), 1547–1548 (2012) CrossRef
186.
Zurück zum Zitat Ortiz, M., Radovitzky, R.A., Repetto, E.A.: The computation of the exponential and logarithmic mappings and their first and second linearizations. Int. J. Numer. Methods Eng. 52(12), 1431–1441 (2001) MATHMathSciNetCrossRef Ortiz, M., Radovitzky, R.A., Repetto, E.A.: The computation of the exponential and logarithmic mappings and their first and second linearizations. Int. J. Numer. Methods Eng. 52(12), 1431–1441 (2001) MATHMathSciNetCrossRef
187.
Zurück zum Zitat Panov, A.D., Shumaev, V.V.: Using the logarithmic strain measure for solving torsion problems. Mech. Solids 47(1), 71–78 (2012) CrossRef Panov, A.D., Shumaev, V.V.: Using the logarithmic strain measure for solving torsion problems. Mech. Solids 47(1), 71–78 (2012) CrossRef
188.
Zurück zum Zitat Pennec, X.: Left-invariant Riemannian elasticity: a distance on shape diffeomorphisms? In: 1st MICCAI Workshop on Mathematical Foundations of Computational Anatomy: Geometrical, Statistical and Registration Methods for Modeling Biological Shape Variability, pp. 1–13 (2006) Pennec, X.: Left-invariant Riemannian elasticity: a distance on shape diffeomorphisms? In: 1st MICCAI Workshop on Mathematical Foundations of Computational Anatomy: Geometrical, Statistical and Registration Methods for Modeling Biological Shape Variability, pp. 1–13 (2006)
189.
Zurück zum Zitat Pennec, X., Stefanescu, R., Arsigny, V., Fillard, P., Ayache, N.: Riemannian elasticity: a statistical regularization framework for non-linear registration. In: Medical Image Computing and Computer-Assisted Intervention----MICCAI 2005, pp. 943–950. Springer, Berlin (2005) CrossRef Pennec, X., Stefanescu, R., Arsigny, V., Fillard, P., Ayache, N.: Riemannian elasticity: a statistical regularization framework for non-linear registration. In: Medical Image Computing and Computer-Assisted Intervention----MICCAI 2005, pp. 943–950. Springer, Berlin (2005) CrossRef
190.
Zurück zum Zitat Perić, D., Owen, D.R.J., Honnor, M.E.: A model for finite strain elasto-plasticity based on logarithmic strains: computational issues. Comput. Methods Appl. Mech. Eng. 94(1), 35–61 (1992) MATHADSCrossRef Perić, D., Owen, D.R.J., Honnor, M.E.: A model for finite strain elasto-plasticity based on logarithmic strains: computational issues. Comput. Methods Appl. Mech. Eng. 94(1), 35–61 (1992) MATHADSCrossRef
191.
Zurück zum Zitat Plesěk, J., Kruisová, A.: Formulation, validation and numerical procedures for Hencky’s elasticity model. Comput. Struct. 84, 1141–1150 (2006) CrossRef Plesěk, J., Kruisová, A.: Formulation, validation and numerical procedures for Hencky’s elasticity model. Comput. Struct. 84, 1141–1150 (2006) CrossRef
192.
Zurück zum Zitat Poirier, J.-P., Tarantola, A.: A logarithmic equation of state. Phys. Earth Planet. Inter. 109, 1–8 (1998) ADSCrossRef Poirier, J.-P., Tarantola, A.: A logarithmic equation of state. Phys. Earth Planet. Inter. 109, 1–8 (1998) ADSCrossRef
193.
Zurück zum Zitat Poisson, S.D.: Traité de Mécanique, vol. 2 (1811) Poisson, S.D.: Traité de Mécanique, vol. 2 (1811)
194.
Zurück zum Zitat Raoult, A.: Non-polyconvexity of the stored energy function of a St.Venant-Kirchhoff material. Apl. Mat. 6, 417–419 (1986) MathSciNetMATH Raoult, A.: Non-polyconvexity of the stored energy function of a St.Venant-Kirchhoff material. Apl. Mat. 6, 417–419 (1986) MathSciNetMATH
195.
200.
Zurück zum Zitat Rivlin, R.: Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 241(835), 379–397 (1948) MATHMathSciNetADSCrossRef Rivlin, R.: Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 241(835), 379–397 (1948) MATHMathSciNetADSCrossRef
201.
202.
Zurück zum Zitat Rivlin, R.S.: Some restrictions on constitutive equations. In: Domingos, J.J., Nina, M.N.R., Whitelaw, J.H. (eds.) Proc. Int. Symp. on the Foundations of Continuum Thermodynamics, pp. 229–258. Macmillan, London (1974) Rivlin, R.S.: Some restrictions on constitutive equations. In: Domingos, J.J., Nina, M.N.R., Whitelaw, J.H. (eds.) Proc. Int. Symp. on the Foundations of Continuum Thermodynamics, pp. 229–258. Macmillan, London (1974)
203.
Zurück zum Zitat Rolph, W.D., Bathe, K.J.: On a large strain finite element formulation for elasto-plastic analysis. In: Constitutive Equations: Macro and Computational Aspects, Winter Annual Meeting, pp. 131–147. ASME, New York (1984) Rolph, W.D., Bathe, K.J.: On a large strain finite element formulation for elasto-plastic analysis. In: Constitutive Equations: Macro and Computational Aspects, Winter Annual Meeting, pp. 131–147. ASME, New York (1984)
204.
Zurück zum Zitat Rosakis, P.: Ellipticity and deformations with discontinuous gradients in finite elastostatics. Arch. Ration. Mech. Anal. 109(1), 1–37 (1990) MATHMathSciNetCrossRef Rosakis, P.: Ellipticity and deformations with discontinuous gradients in finite elastostatics. Arch. Ration. Mech. Anal. 109(1), 1–37 (1990) MATHMathSciNetCrossRef
206.
Zurück zum Zitat Rougée, P.: Mécanique des Grandes Transformations. Mathématiques et Applications, vol. 25. Springer, Berlin (1997) MATH Rougée, P.: Mécanique des Grandes Transformations. Mathématiques et Applications, vol. 25. Springer, Berlin (1997) MATH
207.
Zurück zum Zitat Rougée, P.: An intrinsic Lagrangian statement of constitutive laws in large strain. Compos. Struct. 84(17), 1125–1133 (2006) CrossRefMathSciNet Rougée, P.: An intrinsic Lagrangian statement of constitutive laws in large strain. Compos. Struct. 84(17), 1125–1133 (2006) CrossRefMathSciNet
208.
Zurück zum Zitat Sansour, C.: On the dual variable of the logarithmic strain tensor, the dual variable of the Cauchy stress tensor, and related issues. Int. J. Solids Struct. 38(50), 9221–9232 (2001) MATHMathSciNetCrossRef Sansour, C.: On the dual variable of the logarithmic strain tensor, the dual variable of the Cauchy stress tensor, and related issues. Int. J. Solids Struct. 38(50), 9221–9232 (2001) MATHMathSciNetCrossRef
209.
Zurück zum Zitat Sansour, C.: On the physical assumptions underlying the volumetric-isochoric split and the case of anisotropy. Eur. J. Mech. A, Solids 27(1), 28–39 (2008) MATHMathSciNetADSCrossRef Sansour, C.: On the physical assumptions underlying the volumetric-isochoric split and the case of anisotropy. Eur. J. Mech. A, Solids 27(1), 28–39 (2008) MATHMathSciNetADSCrossRef
210.
Zurück zum Zitat Sansour, C., Kollmann, F.G.: On theory and numerics of large viscoplastic deformation. Comput. Methods Appl. Mech. Eng. 146(3), 351–369 (1997) MATHADSCrossRef Sansour, C., Kollmann, F.G.: On theory and numerics of large viscoplastic deformation. Comput. Methods Appl. Mech. Eng. 146(3), 351–369 (1997) MATHADSCrossRef
212.
Zurück zum Zitat Sawyers, K.N., Rivlin, R.: A note on the Hadamard criterion for an incompressible isotropic elastic material. Mech. Res. Commun. 5, 211–224 (1978) MATHMathSciNetCrossRef Sawyers, K.N., Rivlin, R.: A note on the Hadamard criterion for an incompressible isotropic elastic material. Mech. Res. Commun. 5, 211–224 (1978) MATHMathSciNetCrossRef
213.
Zurück zum Zitat Sawyers, K.N., Rivlin, R.: On the speed of propagation of waves in a deformed compressible elastic material. Z. Angew. Math. Phys. 29, 245–251 (1978) MATHMathSciNetCrossRef Sawyers, K.N., Rivlin, R.: On the speed of propagation of waves in a deformed compressible elastic material. Z. Angew. Math. Phys. 29, 245–251 (1978) MATHMathSciNetCrossRef
214.
Zurück zum Zitat Scheidler, M.: Time rates of generalized strain tensors Part I: Component formulas. Mech. Mater. 11(3), 199–210 (1991) CrossRef Scheidler, M.: Time rates of generalized strain tensors Part I: Component formulas. Mech. Mater. 11(3), 199–210 (1991) CrossRef
215.
Zurück zum Zitat Scheidler, M.: Time rates of generalized strain tensors, Part II: Approximate basis-free formulas. Mech. Mater. 11(3), 211–219 (1991) CrossRef Scheidler, M.: Time rates of generalized strain tensors, Part II: Approximate basis-free formulas. Mech. Mater. 11(3), 211–219 (1991) CrossRef
216.
Zurück zum Zitat Schröder, J., Neff, P.: Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int. J. Solids Struct. 40(2), 401–445 (2003) MATHCrossRefMathSciNet Schröder, J., Neff, P.: Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int. J. Solids Struct. 40(2), 401–445 (2003) MATHCrossRefMathSciNet
217.
Zurück zum Zitat Schröder, J., Neff, P.: Poly, quasi and rank-one convexity in mechanics. In: CISM-Course Udine. Springer, Berlin (2009) Schröder, J., Neff, P.: Poly, quasi and rank-one convexity in mechanics. In: CISM-Course Udine. Springer, Berlin (2009)
218.
Zurück zum Zitat Schröder, J., Neff, P.: On the construction of polyconvex transversely isotropic free energy functions. In: IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains, 21 August 2001 (2001). Organizer: C. Miehe, University Stuttgart Schröder, J., Neff, P.: On the construction of polyconvex transversely isotropic free energy functions. In: IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains, 21 August 2001 (2001). Organizer: C. Miehe, University Stuttgart
219.
Zurück zum Zitat Schröder, J., Neff, P., Balzani, D.: A variational approach for materially stable anisotropic hyperelasticity. Int. J. Solids Struct. 42(15), 4352–4371 (2005) MATHCrossRefMathSciNet Schröder, J., Neff, P., Balzani, D.: A variational approach for materially stable anisotropic hyperelasticity. Int. J. Solids Struct. 42(15), 4352–4371 (2005) MATHCrossRefMathSciNet
220.
Zurück zum Zitat Schröder, J., Neff, P., Ebbing, V.: Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors. J. Mech. Phys. Solids 56(12), 3486–3506 (2008) MATHMathSciNetADSCrossRef Schröder, J., Neff, P., Ebbing, V.: Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors. J. Mech. Phys. Solids 56(12), 3486–3506 (2008) MATHMathSciNetADSCrossRef
221.
Zurück zum Zitat Schwarz, A., Schröder, J., Starke, G.: A modified least-squares mixed finite element with improved momentum balance. Int. J. Numer. Methods Eng. 81(3), 286–306 (2010) MATHMathSciNet Schwarz, A., Schröder, J., Starke, G.: A modified least-squares mixed finite element with improved momentum balance. Int. J. Numer. Methods Eng. 81(3), 286–306 (2010) MATHMathSciNet
222.
Zurück zum Zitat Sendova, T., Walton, J.R.: On strong ellipticity for isotropic hyperelastic materials based upon logarithmic strain. Int. J. Non-Linear Mech. 40(2–3), 195–212 (2005) MATHMathSciNetADSCrossRef Sendova, T., Walton, J.R.: On strong ellipticity for isotropic hyperelastic materials based upon logarithmic strain. Int. J. Non-Linear Mech. 40(2–3), 195–212 (2005) MATHMathSciNetADSCrossRef
223.
Zurück zum Zitat Seth, B.R.: Generalized strain measure with applications to physical problems. In: Rainer, M.A. (ed.) Second-Order Effects in Elasticity, Plasticity and Fluid Dynamics, pp. 162–172. Pergamon, Oxford (1961) Seth, B.R.: Generalized strain measure with applications to physical problems. In: Rainer, M.A. (ed.) Second-Order Effects in Elasticity, Plasticity and Fluid Dynamics, pp. 162–172. Pergamon, Oxford (1961)
224.
Zurück zum Zitat Shrivastava, S., Ghosh, C., Jonas, J.: A comparison of the von Mises and Hencky equivalent strains for use in simple shear experiments. Philos. Mag. Lett. 92(7), 779–786 (2012) ADSCrossRef Shrivastava, S., Ghosh, C., Jonas, J.: A comparison of the von Mises and Hencky equivalent strains for use in simple shear experiments. Philos. Mag. Lett. 92(7), 779–786 (2012) ADSCrossRef
225.
Zurück zum Zitat Sidoroff, R.: Sur les restrictions à imposer à l’énergie de déformation d’un matériau hyperélastique. C. R. Acad. Sci. Paris 279, 379–382 (1974) MATHMathSciNet Sidoroff, R.: Sur les restrictions à imposer à l’énergie de déformation d’un matériau hyperélastique. C. R. Acad. Sci. Paris 279, 379–382 (1974) MATHMathSciNet
226.
Zurück zum Zitat Šilhavý, M.: The Mechanics and Thermomechanics of Continuous Media. Springer, Berlin (1997) CrossRefMATH Šilhavý, M.: The Mechanics and Thermomechanics of Continuous Media. Springer, Berlin (1997) CrossRefMATH
227.
Zurück zum Zitat Šilhavý, M.: Convexity conditions for rotationally invariant functions in two dimensions. In: Sequeira, et al. (eds.) Applied Nonlinear Analysis. Kluwer Academic, New York (1999) Šilhavý, M.: Convexity conditions for rotationally invariant functions in two dimensions. In: Sequeira, et al. (eds.) Applied Nonlinear Analysis. Kluwer Academic, New York (1999)
228.
Zurück zum Zitat Šilhavý, M.: On isotropic rank one convex functions. Proc. R. Soc. Edinb. 129, 1081–1105 (1999) MATHCrossRef Šilhavý, M.: On isotropic rank one convex functions. Proc. R. Soc. Edinb. 129, 1081–1105 (1999) MATHCrossRef
229.
Zurück zum Zitat Šilhavý, M.: Rank 1 convex hulls of isotropic functions in dimension 2 by 2. Math. Bohem. 126(2), 521–529 (2001) MATHMathSciNet Šilhavý, M.: Rank 1 convex hulls of isotropic functions in dimension 2 by 2. Math. Bohem. 126(2), 521–529 (2001) MATHMathSciNet
230.
Zurück zum Zitat Šilhavý, M.: Convexity Conditions for Rotationally Invariant Functions in Two Dimensions. Springer, Berlin (2002) CrossRefMATH Šilhavý, M.: Convexity Conditions for Rotationally Invariant Functions in Two Dimensions. Springer, Berlin (2002) CrossRefMATH
231.
Zurück zum Zitat Šilhavý, M.: Monotonicity of rotationally invariant convex and rank 1 convex functions. Proc. R. Soc. Edinb. 132, 419–435 (2002) MATHCrossRefMathSciNet Šilhavý, M.: Monotonicity of rotationally invariant convex and rank 1 convex functions. Proc. R. Soc. Edinb. 132, 419–435 (2002) MATHCrossRefMathSciNet
232.
234.
Zurück zum Zitat Silling, S.A.: Numerical studies of loss of ellipticity near singularities in an elastic material. J. Elast. 19(3), 213–239 (1988) MATHMathSciNetCrossRef Silling, S.A.: Numerical studies of loss of ellipticity near singularities in an elastic material. J. Elast. 19(3), 213–239 (1988) MATHMathSciNetCrossRef
235.
Zurück zum Zitat Simo, J.C.: Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comput. Methods Appl. Mech. Eng. 99(1), 61–112 (1992) MATHMathSciNetADSCrossRef Simo, J.C.: Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comput. Methods Appl. Mech. Eng. 99(1), 61–112 (1992) MATHMathSciNetADSCrossRef
236.
Zurück zum Zitat Simpson, H., Spector, S.: On copositive matrices and strong ellipticity for isotropic elastic materials. Arch. Ration. Mech. Anal. 84(1), 55–68 (1983) MATHMathSciNetCrossRef Simpson, H., Spector, S.: On copositive matrices and strong ellipticity for isotropic elastic materials. Arch. Ration. Mech. Anal. 84(1), 55–68 (1983) MATHMathSciNetCrossRef
237.
Zurück zum Zitat Simpson, H., Spector, S.: On bifurcation in finite elasticity: buckling of a rectangular rod. J. Elast. 92(3), 277–326 (2008) MATHMathSciNetCrossRef Simpson, H., Spector, S.: On bifurcation in finite elasticity: buckling of a rectangular rod. J. Elast. 92(3), 277–326 (2008) MATHMathSciNetCrossRef
238.
Zurück zum Zitat Skrzypek, J., Wróblewski, A.: Application of logarithmic strains to changing principal directions via progressing transformations. J. Struct. Mech. 13(3–4), 283–299 (1985) CrossRef Skrzypek, J., Wróblewski, A.: Application of logarithmic strains to changing principal directions via progressing transformations. J. Struct. Mech. 13(3–4), 283–299 (1985) CrossRef
239.
Zurück zum Zitat Smith, C.W., Wootton, R.J., Evans, K.E.: Interpretation of experimental data for Poisson’s ratio of highly nonlinear materials. Exp. Mech. 39(4), 356–362 (1999) CrossRef Smith, C.W., Wootton, R.J., Evans, K.E.: Interpretation of experimental data for Poisson’s ratio of highly nonlinear materials. Exp. Mech. 39(4), 356–362 (1999) CrossRef
240.
Zurück zum Zitat Starke, G.: An adaptive least-squares mixed finite element method for elasto-plasticity. SIAM J. Numer. Anal. 45(1), 371–388 (2007) MATHMathSciNetCrossRef Starke, G.: An adaptive least-squares mixed finite element method for elasto-plasticity. SIAM J. Numer. Anal. 45(1), 371–388 (2007) MATHMathSciNetCrossRef
241.
Zurück zum Zitat Starke, G., Schwarz, A., Schröder, J.: Analysis of a modified first-order system least squares method for linear elasticity with improved momentum balance. SIAM J. Numer. Anal. 49(3), 1006–1022 (2011) MATHMathSciNetCrossRef Starke, G., Schwarz, A., Schröder, J.: Analysis of a modified first-order system least squares method for linear elasticity with improved momentum balance. SIAM J. Numer. Anal. 49(3), 1006–1022 (2011) MATHMathSciNetCrossRef
242.
Zurück zum Zitat Tabor, D.: The bulk modulus of rubber. Polymer 35(13), 2759–2763 (1994) CrossRef Tabor, D.: The bulk modulus of rubber. Polymer 35(13), 2759–2763 (1994) CrossRef
243.
Zurück zum Zitat Tanner, R., Tanner, E.: Heinrich Hencky: a rheological pioneer. Rheol. Acta 42(1–2), 93–101 (2003) CrossRef Tanner, R., Tanner, E.: Heinrich Hencky: a rheological pioneer. Rheol. Acta 42(1–2), 93–101 (2003) CrossRef
244.
Zurück zum Zitat Tarantola, A.: Elements for Physics: Quantities, Qualities, and Intrinsic Theories. Springer, Heidelberg (2006) CrossRef Tarantola, A.: Elements for Physics: Quantities, Qualities, and Intrinsic Theories. Springer, Heidelberg (2006) CrossRef
247.
Zurück zum Zitat Treloar, L.R.G.: Stress-strain data for vulcanised rubber under various types of deformation. Trans. Faraday Soc. 40, 59–70 (1944) CrossRef Treloar, L.R.G.: Stress-strain data for vulcanised rubber under various types of deformation. Trans. Faraday Soc. 40, 59–70 (1944) CrossRef
248.
Zurück zum Zitat Treloar, L.R.G.: The elasticity and related properties of rubbers. Rep. Prog. Phys. 36(7), 755 (1973) ADSCrossRef Treloar, L.R.G.: The elasticity and related properties of rubbers. Rep. Prog. Phys. 36(7), 755 (1973) ADSCrossRef
249.
Zurück zum Zitat Treloar, L.R.G.: The Physics of Rubber Elasticity. Oxford University Press, London (1975) MATH Treloar, L.R.G.: The Physics of Rubber Elasticity. Oxford University Press, London (1975) MATH
250.
Zurück zum Zitat Truesdell, C.: Das ungelöste Hauptproblem der endlichen Elastizitätstheorie. Z. Angew. Math. Mech. 36(3–4), 97–103 (1956) MATHMathSciNetCrossRef Truesdell, C.: Das ungelöste Hauptproblem der endlichen Elastizitätstheorie. Z. Angew. Math. Mech. 36(3–4), 97–103 (1956) MATHMathSciNetCrossRef
251.
Zurück zum Zitat Truesdell, C.: The Mechanical Foundations of Elasticity and Fluid Dynamics, vol. 8. Gordon & Breach, New York (1966) MATH Truesdell, C.: The Mechanical Foundations of Elasticity and Fluid Dynamics, vol. 8. Gordon & Breach, New York (1966) MATH
252.
Zurück zum Zitat Truesdell, C., Moon, H.: Inequalities sufficient to ensure semi-invertibility of isotropic functions. J. Elast. 5(34), 183–189 (1975) MATHMathSciNet Truesdell, C., Moon, H.: Inequalities sufficient to ensure semi-invertibility of isotropic functions. J. Elast. 5(34), 183–189 (1975) MATHMathSciNet
253.
Zurück zum Zitat Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/3. Springer, Heidelberg (1965) Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/3. Springer, Heidelberg (1965)
254.
Zurück zum Zitat Truesdell, C., Toupin, R.: The classical field theories. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/1. Springer, Heidelberg (1960) Truesdell, C., Toupin, R.: The classical field theories. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/1. Springer, Heidelberg (1960)
255.
Zurück zum Zitat Truesdell, C., Toupin, R.: Static grounds for inequalities in finite strain of elastic materials. Arch. Ration. Mech. Anal. 12(1), 1–33 (1963) MATHMathSciNetCrossRef Truesdell, C., Toupin, R.: Static grounds for inequalities in finite strain of elastic materials. Arch. Ration. Mech. Anal. 12(1), 1–33 (1963) MATHMathSciNetCrossRef
256.
Zurück zum Zitat Vallée, C.: Lois de comportement élastique isotropes en grandes déformations. Int. J. Eng. Sci. 16(7), 451–457 (1978) MATHCrossRef Vallée, C.: Lois de comportement élastique isotropes en grandes déformations. Int. J. Eng. Sci. 16(7), 451–457 (1978) MATHCrossRef
257.
Zurück zum Zitat Vallée, C., Fortuné, D., Lerintiu, C.: On the dual variable of the Cauchy stress tensor in isotropic finite hyperelasticity. C. R., Méc. 336(11), 851–855 (2008) MATHCrossRef Vallée, C., Fortuné, D., Lerintiu, C.: On the dual variable of the Cauchy stress tensor in isotropic finite hyperelasticity. C. R., Méc. 336(11), 851–855 (2008) MATHCrossRef
258.
Zurück zum Zitat Wang, Y., Aron, M.: A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media. J. Elast. 44(1), 89–96 (1996) MATHMathSciNetCrossRef Wang, Y., Aron, M.: A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media. J. Elast. 44(1), 89–96 (1996) MATHMathSciNetCrossRef
259.
Zurück zum Zitat Weber, G., Anand, L.: Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comput. Methods Appl. Mech. Eng. 79(2), 173–202 (1990) MATHADSCrossRef Weber, G., Anand, L.: Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comput. Methods Appl. Mech. Eng. 79(2), 173–202 (1990) MATHADSCrossRef
260.
Zurück zum Zitat Wilber, J.P., Criscione, J.C.: The Baker-Ericksen inequalities for hyperelastic models using a novel set of invariants of Hencky strain. Int. J. Solids Struct. 42(5–6), 1547–1559 (2005) MATHMathSciNetCrossRef Wilber, J.P., Criscione, J.C.: The Baker-Ericksen inequalities for hyperelastic models using a novel set of invariants of Hencky strain. Int. J. Solids Struct. 42(5–6), 1547–1559 (2005) MATHMathSciNetCrossRef
261.
Zurück zum Zitat Xiao, H.: Hencky strain and Hencky model: extending history and ongoing tradition. Multidiscipline Mod. Mat. Struct. 1(1), 1–52 (2005) CrossRef Xiao, H.: Hencky strain and Hencky model: extending history and ongoing tradition. Multidiscipline Mod. Mat. Struct. 1(1), 1–52 (2005) CrossRef
262.
Zurück zum Zitat Xiao, H., Bruhns, O.T., Meyers, A.: Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech. 124(1–4), 89–105 (1997) MATHMathSciNetCrossRef Xiao, H., Bruhns, O.T., Meyers, A.: Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech. 124(1–4), 89–105 (1997) MATHMathSciNetCrossRef
263.
Zurück zum Zitat Xiao, H., Bruhns, O.T., Meyers, A.: Existence and uniqueness of the integrable-exactly hypoelastic equation \({\tau}^{\circ}=\lambda(\operatorname {tr}D){\mbox{I}}+ 2\mu{D}\) and its significance to finite inelasticity. Acta Mech. 138(1–2), 31–50 (1999) MATHCrossRef Xiao, H., Bruhns, O.T., Meyers, A.: Existence and uniqueness of the integrable-exactly hypoelastic equation \({\tau}^{\circ}=\lambda(\operatorname {tr}D){\mbox{I}}+ 2\mu{D}\) and its significance to finite inelasticity. Acta Mech. 138(1–2), 31–50 (1999) MATHCrossRef
264.
Zurück zum Zitat Xiao, H., Bruhns, O.T., Meyers, A.: Elastoplasticity beyond small deformations. Acta Mech. 182(1–2), 31–111 (2006) MATHCrossRef Xiao, H., Bruhns, O.T., Meyers, A.: Elastoplasticity beyond small deformations. Acta Mech. 182(1–2), 31–111 (2006) MATHCrossRef
265.
Zurück zum Zitat Xiao, H., Chen, L.S.: Hencky’s elasticity model and linear stress-strain relations in isotropic finite hyperelasticity. Acta Mech. 157(1–4), 51–60 (2002) MATHCrossRef Xiao, H., Chen, L.S.: Hencky’s elasticity model and linear stress-strain relations in isotropic finite hyperelasticity. Acta Mech. 157(1–4), 51–60 (2002) MATHCrossRef
266.
Zurück zum Zitat Zhang, Y., Li, H., Xiao, H.: Further study of rubber-like elasticity: elastic potentials matching biaxial data. Appl. Math. Mech. 35, 13–24 (2014) MathSciNetCrossRef Zhang, Y., Li, H., Xiao, H.: Further study of rubber-like elasticity: elastic potentials matching biaxial data. Appl. Math. Mech. 35, 13–24 (2014) MathSciNetCrossRef
267.
Zurück zum Zitat Zhilin, P.A., Altenbach, H., Ivanova, E.A., Krivtsov, A.: Material strain tensor. In: Altenbach, H., Forest, S., Krivtsov, A. (eds.) Generalized Continua as Models for Materials, pp. 321–331. Springer, Berlin (2013) CrossRef Zhilin, P.A., Altenbach, H., Ivanova, E.A., Krivtsov, A.: Material strain tensor. In: Altenbach, H., Forest, S., Krivtsov, A. (eds.) Generalized Continua as Models for Materials, pp. 321–331. Springer, Berlin (2013) CrossRef
268.
Zurück zum Zitat Zimmermann, J., Stommel, M.: The mechanical behavior of rubber under hydrostatic compression and the effect on the results of finite element analyses. Arch. Appl. Mech. 83(2), 293–302 (2013) MATHADSCrossRef Zimmermann, J., Stommel, M.: The mechanical behavior of rubber under hydrostatic compression and the effect on the results of finite element analyses. Arch. Appl. Mech. 83(2), 293–302 (2013) MATHADSCrossRef
269.
Zurück zum Zitat Zubov, L.M., Rudev, A.N.: Necessary and sufficient criteria for ellipticity of the equilibrium equations of a non-linearly elastic medium. J. Appl. Math. Mech. 59(2), 197–208 (1995) MATHMathSciNetCrossRef Zubov, L.M., Rudev, A.N.: Necessary and sufficient criteria for ellipticity of the equilibrium equations of a non-linearly elastic medium. J. Appl. Math. Mech. 59(2), 197–208 (1995) MATHMathSciNetCrossRef
270.
Zurück zum Zitat Zubov, L.M., Rudev, A.N.: A criterion for the strong ellipticity of the equilibrium equations of an isotropic nonlinearly elastic material. J. Appl. Math. Mech. 75, 432–446 (2011) MATHMathSciNetCrossRef Zubov, L.M., Rudev, A.N.: A criterion for the strong ellipticity of the equilibrium equations of an isotropic nonlinearly elastic material. J. Appl. Math. Mech. 75, 432–446 (2011) MATHMathSciNetCrossRef
Metadaten
Titel
The Exponentiated Hencky-Logarithmic Strain Energy. Part I: Constitutive Issues and Rank-One Convexity
verfasst von
Patrizio Neff
Ionel-Dumitrel Ghiba
Johannes Lankeit
Publikationsdatum
01.12.2015
Verlag
Springer Netherlands
Erschienen in
Journal of Elasticity / Ausgabe 2/2015
Print ISSN: 0374-3535
Elektronische ISSN: 1573-2681
DOI
https://doi.org/10.1007/s10659-015-9524-7

Weitere Artikel der Ausgabe 2/2015

Journal of Elasticity 2/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.