Skip to main content

Advertisement

Log in

A Water Quality Monitoring Network Design Methodology for the Selection of Critical Sampling Points: Part I

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The principal instrument to temporally and spatially manage water resources is a water quality monitoring network. However, to date in most cases, there is a clear absence of a concise strategy or methodology for designing monitoring networks, especially when deciding upon the placement of sampling stations. Since water quality monitoring networks can be quite costly, it is very important to properly design the monitoring network so that maximum information extraction can be accomplished, which in turn is vital when informing decision-makers. This paper presents the development of a methodology for identifying the critical sampling locations within a watershed. Hence, it embodies the spatial component in the design of a water quality monitoring network by designating the critical stream locations that should ideally be sampled. For illustration purposes, the methodology focuses on a single contaminant, namely total phosphorus, and is applicable to small, upland, predominantly agricultural-forested watersheds. It takes a number of hydrologic, topographic, soils, vegetative, and land use factors into account. In addition, it includes an economic as well as logistical component in order to approximate the number of sampling points required for a given budget and to only consider the logistically accessible stream reaches in the analysis, respectively. The methodology utilizes a geographic information system (GIS), hydrologic simulation model, and fuzzy logic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, J. E.: 1997, ‘Taming complexity in large-scale fuzzy systems’, PC AI 11, 39–42.

    Google Scholar 

  • Armstrong, D. E., Lee, K. W., Uttormark, P. D., Keeney, D. R. and Harris, R. F.: 1974, ‘Pollution of the Great Lakes by Nutrients from Agricultural Land’, Report to Great Lakes Basin Commission, WRIL 140169, Ann Arbor, Michigan.

  • Barnes, P. L.: 1997, Row Crop Pollution Control in Northeast Kansas, Kansas State University.

  • Beaulac, M. N. and Reckhow, K. M.: 1982, ‘An examination of land use-nutrient export relationships’, Water Resour. Bull. 18, 1013–1024.

    CAS  Google Scholar 

  • Bojadziev, G. and Bojadziev, M.: 1995, Fuzzy Sets, Fuzzy Logic, Applications, Advances in Fuzzy Systems – Applications and Theory Vol. 5, World Scientific, Singapore.

    Google Scholar 

  • Bottcher, A. B., Tremwel, T. K. and Campbell, K. L.: 1995, ‘Best management practices for water quality improvement in the Lake Okeechobee watershed’, Ecol. Eng. 5, 341–356.

    Google Scholar 

  • Burns, J.: 1980, ‘Alternatives for Non-row Cropland (or the Place where Row Crops and Grasslands Meet)’, Southeastern Soil Erosion Control and Water Quality Workshop, November 19–21, Nashville, Tennessee.

  • Burrough, P. A.: 1989, ‘Fuzzy mathematical methods for soil survey and land evaluation’, J. Soil Sci. 40, 477–492.

    Google Scholar 

  • Burrough, P. A., MacMillan, R. A. and Deursen, W.: 1992, ‘Fuzzy classification methods for determining land suitability from soil profile observations’, J. Soil Sci. 43, 193–210.

    Google Scholar 

  • Burrough, P. A. and McDonnell, R. A.: 1998, Principles of Geographical Information Systems, Oxford University Press, Oxford.

    Google Scholar 

  • Burt, T. P. and Butcher, D. P.: 1986, ‘Development of topographic indices for use in semi-distributed hillslope runoff models’, Z. Geomorph. (Suppl.-Bd.) 58, 1–19.

    Google Scholar 

  • Clesceri, N. L., Curran, S. J. and Sedlak, R. I.: 1986a, ‘Nutrient loads to Wisconsin lakes: Part I. Nitrogen and phosphorus export coefficients’, Water Resour. Bull. 22, 983–990.

    CAS  Google Scholar 

  • Clesceri, N. L., Curran, S. J. and Sedlak, R.I.: 1986b, ‘Nutrient loads to Wisconsin lakes: Part II. Relative importance of point and nonpoint sources’, Water Resour. Bull. 22, 991–1000.

    CAS  Google Scholar 

  • Cooper, J. R., Gilliam, J. W., Daniels, R. B. and Robarge, W. P.: 1987, ‘Riparian areas as filters for agricultural sediment’, J. Soil Sci. Soc. Am. 51, 416–420.

    Google Scholar 

  • Davidson, D. A., Theocharopoulos, S. P. and Bloksma, R. J.: 1994, ‘A land evaluation project in Greece using GIS and based on Boolean and fuzzy set methodologies’, Int. J. GIS 8, 369–384.

    Google Scholar 

  • De Gruijter, J. J., Walvoort, D. J. J. and Van Gaans, P. F. M.: 1997, ‘Continuous soil maps: A fuzzy set approach to bridge the gap between aggregation levels of process and distribution models’, Geoderma 77, 169–195.

    Article  Google Scholar 

  • Dillon, P. J. and Kirchner, W. B.: 1975, ‘The effects of geology and land use on the export of phosphorus from watersheds’, Water Res. 9, 135–148.

    Article  CAS  Google Scholar 

  • Donigian, A. S., Jr., Bicknell, B. R., Linker, L. C., Hannawald, J., Chang, C. and Reynolds, R.: 1990, Chesapeake Bay Program Watershed Model Application to Calculate Bay Nutrient Loadings: Preliminary Phase I Findings and Recommendations, Prepared by AQUA TERRA Consultants for the U.S. Chesapeake Bay Program, Annapolis, MD.

  • ESRI: 1999, ArcView® 3.2 Software Help, Redlands, CA.

  • Evans, I. S. and Cox, N. J.: 1999, ‘Relations Between Land Surface Properties: Altitude, Slope and Curvature’, in S. Hergarten and H. J. Neugebauer (eds.), Process Modelling and Landform Evolution, Springer Verlag, Berlin.

  • Evans, B. M.: 2002, ‘Development of an Automated GIS-Based Modeling Approach to Support Regional Watershed Assessments’, Ph.D. Thesis, The Pennsylvania State University, University Park, PA.

  • Frank, E. C. and Lee, R.: 1966, ‘Potential Solar Beam Irradiation on Slopes: Tables for 30 to 50 Latitude’, U.S. Forest Service Research Paper RM, U.S. Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO.

  • Fraser, R. H., Barten, P. K. and Tomlin, C. D.: 1996, ‘SEDMOD: A GIS-based Method for Estimating Distributed Sediment Delivery Ratios’, in Proceedings of the AWRA Annual Symposium: GIS and Water Resources, September 22–26, Fort Lauderdale, FL, pp. 137–146.

  • Frink, C. R.: 1991, ‘Estimating nutrient exports to estuaries’, J. Environ. Qual. 20, 717–724.

    Article  CAS  Google Scholar 

  • Guth, P. L.: 1995, ‘Slope and aspect calculations on gridded digital elevation models: Examples from a geomorphometric toolbox for personal computers’, Z. Geomorph. (Suppl.-Bd.) 101, 31–52.

    Google Scholar 

  • Haith, D. A., Mandel, R. and Wu, R. S.: 1992. GWLF – Generalized Watershed Loading Functions, Version 2.0 – User's manual. Department of Agricultural Engineering, Cornell University, Ithaca, NY.

  • Harmancioglu, N. B., Fistikoglu, O., Ozkul, S. D., Singh, V. P. and Alpaslan, M. N.: 1999, Water Quality Monitoring Network Design. Dordrecht, The Netherlands: Kluwer Academic Publishers.

  • Hartigan, J. P., Quasebarth, T. F. and Sutherland, E.: 1983, ‘Calibration of NPS model loading factors’, J. Environ. Eng. 109, 1259–1272.

    CAS  Google Scholar 

  • Harper, D.: 1992, Eutrophication of Freshwaters: Principles, Problems, and Restoration. 1st ed. London: Chapman & Hall.

    Google Scholar 

  • Horne, A. J. and Goldman, C. R.: 1994, Limnology. 2nd ed. McGraw-Hill Inc: New York.

    Google Scholar 

  • Jahn, A.: 1964, ‘Slopes morphological features resulting from gravitation’, Z. Geomorph. (Suppl.-Bd.) 5, 59–72.

  • Janus, L. L., Soballe, D. M. and Jones, B. L.: 1990, ‘Nutrient budget analysis and phosphorus loading goal for lake Okeechobee, Florida’, Int. Ver. Theor. Ang. Limnol. 24, 538–546.

    Google Scholar 

  • Johnes, P. J.: 1990, ‘An Investigation of the Effects of Land Use Upon Water Quality in the Windrush Catchment’, PhD Thesis, University of Oxford, Oxford.

  • Johnes, P. J.: 1996, ‘Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: The export coefficient modeling approach’, J. Hydrol.(Amst.) 183, 323–349.

    CAS  Google Scholar 

  • Keightley, K. N. and Dokoozlian, R. A.: 2001, ‘Influence of Row Orientation and Cluster Exposure to Sunlight on the Microclimate and Composition of Cabernet Sauvignon Fruits in the Napa Valley’, in ASEV 52nd Annual Meeting, June, San Diego, California.

  • Kirkby, M. J. and Chorley, R. J.: 1967, ‘Throughflow, overland flow and erosion’, Bull. Int. Assoc. Sci. Hydr. 12, 5–21.

    Google Scholar 

  • Kronvang, B.: 1992, ‘The export of particulate matter, particulate phosphorus and dissolved phosphorus from two agricultural river basins: Implications on estimating the non-point phosphorus load’, Water Res. 26, 1347–1358.

    Article  CAS  Google Scholar 

  • Lee, R.: 1978, Forest Microclimatology, Columbia University Press, New York.

    Google Scholar 

  • Mandel, R.: 1993, ‘The Impact of Septic Systems on Surface Water Quality’, M.Sc. Dissertation, School of Civil & Environmental Engineering, Cornell University, Ithaca, NY.

  • Mattikalli, N. M. and Richards, K. S.: 1996, ‘Estimation of surface water quality changes in response to land use change: Application of the export coefficient model using remote sensing and geographical information system’, J. Environ. Man. 48, 263–282.

    Google Scholar 

  • Meybeck, M., Chapman, D. V. and Helmer, R.: 1990, Global Environment Monitoring System: Global Freshwater Quality – A First Assessment. World Health Organization and the United Nations Environment Program. Oxford: Basil Blackwell, Inc.

  • Moore, I. D., O'Loughlin, E. M. and Burch, G. J.: 1988a, ‘A contour-based topographic model for hydrological and ecological applications’, Earth Surf. Process. Landforms 13, 305–320.

    Google Scholar 

  • Moore, I. D., Panuska, J. C., Grayson, R. B. and Srivastava, K. P.: 1988b, ‘Application of Digital Topographic Modeling in Hydrology’, in Proceedings of the International Symposium on Modeling Agricultural, Forest and Rangeland Hydrology, December, Chicago.

  • Moore, I. D., Grayson, R. B. and Ladson, A. R.: 1991, ‘Digital terrain modeling: A review of hydrological, geomorphological, and biological applications’, Hydrol. Process. 5, 3–30.

    Google Scholar 

  • Moore, I. D., Turner, A. K., Wilson, J. P., Jenson, S. K. and Band, L. E.: 1993, ‘GIS and Land Surface-Subsurface Modeling’, in M. F. Goodchild, B. O. Parks and L.T. Steyaert (eds.), Environmental Modeling with GIS, Oxford University Press, Oxford, pp. 196–230.

    Google Scholar 

  • Mulholland, P. J.: 1992, ‘Regulation of nutrient concentrations in a temperate forest stream: Roles of upland, riparian, and instream processes’, Limn. Ocean. 37, 1512–1526.

    CAS  Google Scholar 

  • O'Loughlin, E. M.: 1981, ‘Saturation regions in catchments and their relations to soil and topographic properties’, J. Hydrol.(Amst.) 53, 229–246.

    Google Scholar 

  • Omernik, J. M.: 1976, The Influence of Land Use on Stream Nutrient Levels, EPA-600/3-76-014. U.S. EPA, Washington, DC.

  • Pionke, H. B., Gburek, W. J., Sharpley, A. N. and Schnabel, R. R.: 1995, ‘Flow and Nutrient Export Patterns for an Agricultural Hill-land Watershed’, in Proceedings of the Clean Water, Clean Environment – 21st Century. Volume II: Nutrients, March 5–8, American Society of Agricultural Engineers, Kansas City, MO, pp. 167-170.

  • Prairie, Y. T. and Kalff, J.: 1986, ‘Effect of catchment size on phosphorus export’, Water Resour. Bull. 22, 465–470.

    CAS  Google Scholar 

  • Randall, G., Mulla, D., Rehm, G., Busman, L., Lamb, J. and Schmitt, M.: 1998, ‘Phosphorus Transport to and Availability in Surface Waters’, FO-6796-GO. University of Minnesota Extension Service.

  • Rast, W. and Lee, G. F.: 1983, ‘Nutrient loading estimates for lakes’, J. Environ. Eng. 109, 502–517.

    CAS  Google Scholar 

  • Reckhow, K. H., Beaulac, M. N. and Simpson, J. T.: 1980, ‘Modeling Phosphorous Loading and Lake Response Under Uncertainty: A Manual and Compilation of Export Coefficients’, USEPA. 440/5-80-011, U.S. EPA, Washington, DC.

  • Sims, J. T., Simard, R. R. and Joern, B. C.: 1998, ‘Phosphorus loss in agriculture drainage: Historical perspective and current research’, J. Environ. Qual. 27, 277–293.

    Article  CAS  Google Scholar 

  • Smith, K. A., Jackson, D. R. and Withers, P. J. A.: 2000, ‘Nutrient losses by surface run-off following the application of organic manures to arable land. 2. Phosphorus’, Environ. Pollut. 112, 53–60.

    Google Scholar 

  • Sonzogni, W. C., Chesters, G., Coote, D. R., Jeffs, D. N., Konrad, J. C., Ostry, R. C. and Robinson, J. B.: 1980, ‘Pollution from land runoff’, Environ. Sci. Technol. 14, 148–153.

    Article  CAS  Google Scholar 

  • Strobl, R. O. and Robillard, P. D.: 2006, ‘A Water Quality Monitoring Network Design Methodology for the Selection of Critical Sampling Points: Part II’. (in press).

  • Swift, L. W., Jr.: 1976, ‘Algorithm for solar radiation on mountain slopes’, Water Resour. Res. 12, 108–112.

    Google Scholar 

  • Thorne, C. R., Zevenbergen, L. W., Burt, T. P. and Butcher, D. P.: 1987, ‘Terrain analysis for quantitative decription of zero-order basins’, in Proceedings of the Corvallis Symposium: Erosion and Sedimentation, IAHS Publication no. 165.

  • U.S. Environmental Protection Agency: 1976, Land Use-Water Quality Relationships.

  • U.S. EPA, Washington, DC.

  • U.S. Geological Survey: 1999, The Quality of Our Nation's Waters: Nutrients and Pesticides.

  • U.S. Geological Survey circular 1225, U.S. Department of Interior, U.S. Government Printing Office, USGS, Washington, DC.

  • Uttormark, P. D., Chapin, J. D. and Green, K. M.: 1974, ‘Estimating Nutrient Loading of Lakes from Non-point Sources’, EPA-660/3-74-020, U.S. EPA, Corvallis, Oregon.

  • Vaithiyanathan, P. and Correll, D. L.: 1992, ‘The Rhode River watershed: Phosphorus distribution and export in forest and agricultural soils’, J. Environ. Qual. 21, 280–288.

    Article  CAS  Google Scholar 

  • Vieux, B. E. and Farajalla, N. S.: 1994, ‘Capturing the essential spatial variability in distributed hydrological modelling: Hydraulic roughness’, Hydrol. Process. 8, 221–236.

    Google Scholar 

  • Ward, R. C.: 1996, Water quality monitoring: Where's the beef? Water Resour. Bull. 32, 673–680.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. O. Strobl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strobl, R.O., Robillard, P.D., Shannon, R.D. et al. A Water Quality Monitoring Network Design Methodology for the Selection of Critical Sampling Points: Part I. Environ Monit Assess 112, 137–158 (2006). https://doi.org/10.1007/s10661-006-0774-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-006-0774-5

Keywords

Navigation