Skip to main content

Advertisement

Log in

The effects of landscape-level disturbance on the composition of Minnesota caddisfly (Insecta: Trichoptera) trophic functional groups: evidence for ecosystem homogenization

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Over 300,000 caddisfly specimens representing 249 species were collected from nearly 250 sites throughout Minnesota during 2000 and 2001 to determine the effects of human disturbance on the composition of caddisfly trophic functional groups at the landscape level. Canonical correspondence analysis determined that stream width was the most important variable influencing functional group composition in regions of the state with relatively low disturbance, and that differences in the caddisfly fauna between sizes of streams generally followed trends predicted by the river continuum concept. In regions of the state with moderate disturbance, both stream width and the percentage of disturbed habitat upstream of a site were important variables influencing functional group composition. In highly disturbed regions, no variables corresponded to changes in the composition of caddisfly functional groups. Instead, ecosystems were homogeneous: fine-particle filtering collectors dominated in all sizes of streams. The observed aquatic ecosystem homogenization is attributed mostly to input of fine-particle organic and inorganic sediment from extensive agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, J. D. (1995). Stream ecology: Structure and function of running waters. London: Chapman and Hall.

    Google Scholar 

  • Allan, J. D. (2004). Landscapes and riverscapes: The influence of land use on stream ecosystems. The Annual Review of Ecology, Evolution, and Systematics, 35, 257–284.

    Article  Google Scholar 

  • Allan, J. D., Erickson, D. L., & Fay, J. (1997). The influence of catchment land use on stream integrity across multiple scales. Freshwater Biology, 37, 149–161.

    Article  Google Scholar 

  • Anderson, T. (1978). Influence of temperature on the sex ratio of Trichoptera in light-trap catches in western Norway. Norwegian Journal of Entomology, 25, 149–151.

    Google Scholar 

  • Anderson, J. L., & Grigal, D. F. (1984). Soils and landscapes of Minnesota. University of Minnesota Extension Service, AG-FO-2331, 1–8.

  • Anderson, D. J., & Vondracek, B. (1999). Insects as indicators of land use in three ecoregions in the Prairie Pothole region. Wetlands, 19, 648–664.

    Article  Google Scholar 

  • Bailey, R. G. (1980). Descriptions of the ecoregions of the United States. United States Forest Service Miscellaneous Publication, 1391, 1–58.

    Google Scholar 

  • Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid bioassessment protocols for use in streams and rivers: Periphyton, benthic macroinvertebrates, and fish, 2nd edition. EPA 841-B-99-002. Office of Water, US Environmental Protection Agency, Washington, DC.

  • Benke, A. C., & Cushing, C. E. (2004). Rivers of North America. San Diego: Academic.

    Google Scholar 

  • Berkman, H. E., & Rabeni, C. F. (1987). Effect of siltation on stream fish communities. Environmental Biology and Fisheries, 18, 285–294.

    Article  Google Scholar 

  • Berlin, A., & Thiele, V. (2002). Trichoptera in assessment and classification of streams in the lowlands of northeastern Germany. In W. Mey (Ed.), Proceedings of the 10th international symposium on trichoptera, 30 July–05 August, Potsdam, Germany (pp. 481–490). Keltern, Germany: Nova Supplementa Entomologica.

  • Bierley, G. J., Cohen, T., Fryirs, K., & Brooks, A. (1999). Post-European changes to the fluvial geomorphology of Bega catchment, Australia: Implications for river ecology. Freshwater Biology, 41, 839–848.

    Article  Google Scholar 

  • Boiling, R. H., Goodman, E. D., VanSickle, J. A., Zimmer, J. O., Cummins, K. W., Petersen, R. C., et al. (1975). Toward a model of detritus processing in a woodland stream. Ecology, 56, 141–151.

    Article  Google Scholar 

  • Buol, S. W., Hole, F. D., & McCracken, R. J. (1989). Soil genesis and classification (3rd ed.). Ames: Iowa State University Press.

    Google Scholar 

  • Cardinale, B. J., Ives, A. R., & Inchausti, P. (2004). Effects of species diversity on the primary productivity of ecosystems: extending our spatial and temporal scales of inference. Oikos, 104, 437–450.

    Article  Google Scholar 

  • Cardinale, B. J., & Palmer, M. A. (2002). Disturbance moderates biodiversity-ecosystem function relationships: experimental evidence using suspension feeding caddisflies in stream mesocosms. Ecology, 83, 1915–1927.

    Google Scholar 

  • Cardinale, B. J, Palmer, M. A., & Collins, S. L. (2002). Species diversity enhances ecosystem functioning through interspecific facilitation. Nature, 415, 426–429.

    Article  CAS  Google Scholar 

  • Colwell, R. K. (2004). Biota II: The biodiversity database manager. Sunderland, MA: Sinauer Associates.

  • Covich, A. P., Austen, M. C., Bärlocher, F., Chauvet, E., Cardinale, B. J., Biles, C., et al. (2004). The role of biodiversity in the functioning of freshwater and marine benthic ecosystems. BioScience, 54, 767–775.

    Article  Google Scholar 

  • Cummins, K. W. (1974). Structure and function of aquatic ecosystems. BioScience, 24, 631–641.

    Article  Google Scholar 

  • Cummins, K. W., & Klug, M. J. (1979). Feeding ecology of stream invertebrates. Annual Review of Entomology, 10, 147–172.

    Google Scholar 

  • Delong, M. D., & Brusven, M. A. (1992). Patterns of chlorophyl a in an agricultural non-point source impacted stream. Water Resources Bulletin, 28, 731–741.

    CAS  Google Scholar 

  • Delong, M. D., & Brusven, M. A. (1993). Storage and decomposition of particulate organic matter along the longitudinal gradient of an agriculturally-impacted stream. Hydrobiologia, 262, 77–88.

    Article  CAS  Google Scholar 

  • Delong, M. D., & Brusven, M. A. (1998). Macroinvertebrate community structure along the longitudinal gradient of an agriculturally impacted stream. Environmental Management, 22, 445–457.

    Article  Google Scholar 

  • DeLorme (1994). Minnesota atlas and gazetteer: Topo maps of the entire state. Yarmouth, ME: DeLorme.

    Google Scholar 

  • Dodds, W. K., Huston, R. E., Eichem, A. C., Evans, M. A., Gudder, D. A., Fritz, K. M., et al. (1996). The relationship between flow and light to primary production and producer biomass in a prairie stream. Hydrobiologia, 333, 151–159.

    Article  CAS  Google Scholar 

  • Dohet, A. (2002). Are caddisflies an ideal group for the assessment of water quality in streams?. In W. Mey (Ed.), Proceedings of the 10th international symposium on trichoptera, 30 July–05 August, Potsdam, Germany (pp. 507–520). Keltern, Germany: Nova Supplementa Entomologica.

  • Environmental Systems Research Institute (ESRI) (1996). Using arcview GIS, owner’s manual. Redlands, CA: ESRI.

    Google Scholar 

  • Erman, N. A. & Erman, D. C. (1990). Biogeography of caddisfly (Trichoptera) assemblages in cold springs of the Sierra Nevada (California, USA). California Water Resources Center Contribution 200.

  • Fausch, K. D., Scudder, B. C., Lenz, B. N., & Sullivan, D. J. (2002). Landscapes to riverscapes: Bridging the gap between research and conservation of stream fishes. BioScience, 52, 483–498.

    Article  Google Scholar 

  • Feminella, J. W., Power, M. E., & Resh, V. H. (1989). Periphyton responses to invertebrate grazing and riparian canopy cover in three northern California coastal streams. Freshwater Biology, 22, 445–457.

    Article  Google Scholar 

  • Gage, M. S., Spivak, A., & Paradise, C. J. (2004). Effects of land use and disturbance on benthic insects in headwater streams draining small watersheds north of Charlotte, NC. Southeastern Naturalist, 3, 345–358.

    Article  Google Scholar 

  • Gianessi, L. P., Peshkin, H. M., Crosson, P., & Puffer, C. (1986). Nonpoint source pollution controls: are cropland controls the answer? Resources for the Future. Washington, D.C.

  • Goldstein, R. M. (1995). Aquatic communities and contaminants in fish from streams of the Red River of the North basin, Minnesota and North Dakota. U.S. Geological Survey Water Resources Investigations Report 95-4047.

  • Goldstein, R. M., Stauffer, J. C., Larson, P. R., & Lorenz, D. L. (1996). Relations of physical and chemical characteristics of streams to fish communities in the Red River of the North basin, Minnesota and North Dakota, 1993-5. Water Resources Investigations Report 96-4227.

  • Gray, L. J. (1997). Organic matter dynamics in King’s Creek, Konza Prairie, Kansas, USA. In J. R. Webster, & J. L. Meyer (Eds.), Stream organic matter budgets. Journal of the North American Benthological Society 16 (pp. 50–54).

  • Gregory, S. V, Swanson, F. J., McKee, W. A., & Cummins, K. W. (1991). An ecosystem perspective of riparian zones. Bioscience, 41, 540–551.

    Article  Google Scholar 

  • Harding, J. S., Benfield, E. F., Bolstad, P. V., Helfman, G. S., & Jones, E. B. D. (1998). Stream biodiversity: The ghost of land use past. Proceedings of the National Academy of Science, USA, 95, 14843–14847.

    Article  CAS  Google Scholar 

  • Hawkins, C. P., & Norris, R. H. (2000). Effects of taxonomic resolution and use of subsets of the fauna on the performance of RIVPACS-type models. In J. F. Wright, D. W. Sutcliffe, & M. T. Furse (Eds.), Assessing the biological quality of fresh waters: RIVPACS and other techniques (pp. 217–228). Ambleside, UK: Freshwater Biological Association.

    Google Scholar 

  • Hawkins, C. P., Norris, R. H., Gerritsen, J., Hughes, R. N., Jackson, S. K., Johnson, R. K., et al. (2000a). Evaluation of the use of landscape classifications for the prediction of freshwater biota: Synthesis and recommendations. Journal of the North American Benthological Society, 19, 541–556.

    Article  Google Scholar 

  • Hawkins, C. P., Norris, R. H., Hogue, J. N., & Feminella, K. W. (2000b). Development and evaluation of predictive models for measuring the biological integrity of streams. Ecological Applications, 10, 1456–1477.

    Article  Google Scholar 

  • Hawkins, C. P., & Vinson, M. R. (2000). Weak correspondence between landscape classifications and stream invertebrate assemblages: Implications for bioassesment. Journal of the North American Benthological Society, 19, 501–517.

    Article  Google Scholar 

  • Houghton, D. C. (2003). Evaluation of Minnesota geographic classifications based on caddisfly (Insecta: Trichoptera) data. The Great Lakes Entomologist, 36, 76–92.

    Google Scholar 

  • Houghton, D. C. (2004a). Minnesota caddisfly biodiversity (Insecta: Trichoptera): Delineation and characterization of regions. Environmental Monitoring and Assessment, 95, 53–182.

    Article  Google Scholar 

  • Houghton, D. C. (2004b). Utility of caddisflies (Insecta: Trichoptera) as indicators of habitat disturbance in Minnesota. Journal of Freshwater Ecology, 19, 97–108.

    Google Scholar 

  • Huryn, A. D., Butz-Huryn, V. M., Arbuckle, C. J., & Tsomides, L. (2002). Catchment, land use, macroinvertebrates and detritus processing in headwater streams: Taxonomic richness versus function. Freshwater Biology, 47, 401–415.

    Article  Google Scholar 

  • Johnson, L. B., Breneman, D. H., & Richards, C. (2003). Macroinvertebrate community structure and function associated with large wood in low gradient streams. River research and applications, 19, 199–218.

    Article  Google Scholar 

  • Johnson, L. B., Richards, C., Host, G. E., & Arthur, J. W. (1997). Landscape influences on water chemistry in Midwestern stream ecosystems. Freshwater Biology, 37, 193–208.

    Article  CAS  Google Scholar 

  • Jonsson, M., & Malmqvist, B. (2003). Importance of species identity and number for process rates within different stream invertebrate functional feeding groups. Journal of Animal Ecology, 72, 453–459.

    Article  Google Scholar 

  • Jonsson, M., Malmqvist, B., & Hoffsten, P. O. (2001). Leaf litter breakdown rates in boreal streams: Does shredder species richness matter? Freshwater Biology, 46, 161–171.

    Article  Google Scholar 

  • Karr, J. R., & Chu, E. W. (1999). Restoring life to running waters: Better biological monitoring. Washington, DC: Island.

    Google Scholar 

  • Karr, J. R., & Schlosser, I. J. (1978). Water resources and the land water interface. Science, 201, 229–234.

    Article  Google Scholar 

  • Karr, J. R., Toth, L. A.,& Dudley, D. R. (1985). Fish communities of Midwestern rivers: A history of degradation. Bioscience, 35, 90–95.

    Article  Google Scholar 

  • Kerans, B. L., & Karr, J. R. (1994). A benthic index of biotic integrity (B-IBI) for rivers of the Tennessee Valley. Ecological Applications, 4, 768–785.

    Article  Google Scholar 

  • Kreatzweiser, D. P., Capell, S. S., & Good, K. P. (2005). Macroinvertebrate community response to selection logging on riparian and upland areas of headwater catchments in a northern hardwood forest. Journal of the North American Benthological Society, 24, 208–222.

    Article  Google Scholar 

  • Kremen, C. (1992). Assessing the indicator properties of species assemblages for natural areas monitoring. Ecological Applications, 2, 203–217.

    Article  Google Scholar 

  • Lowe-McConnell, R. H. (1987). Ecological studies in tropical fish communities. Cambridge: Cambridge University Press.

    Google Scholar 

  • Mackay, R. J., & Wiggins, G. B. (1979). Ecological diversity in Trichoptera. Annual Review of Entomology, 24, 185–208.

    Article  Google Scholar 

  • McCune, B., & Medford, M. J. (1997). Multivariate analysis of ecological data, version 3.0. Gleneden Beach, Oregon: MjM Software Design.

  • Merritt, R. W., Cummins, K. W., & Burton, T. M. (1984). The role of aquatic insects in the processing and cycling of nutrients. In V. H. Resh, & D. M. Rosenberg (Eds.), The ecology of aquatic insects (pp. 134–163). New York: Praeger Scientific.

    Google Scholar 

  • Merritt, R. W., Resh, V. H., & Cummins, K. W. (1996). Design of aquatic insect studies: collecting, sampling, and rearing procedures. In R. W. Merrit, & K. W. Cummins (Eds.), An introduction to the aquatic insects of North America (pp. 12–28), (3rd ed.). Dubuque, IA: Kendall.

    Google Scholar 

  • Meyer, J. L. (1997). Stream health: Incorporating the human dimension to advance stream ecology. Journal of the North American Benthological Society, 16, 439–447.

    Article  Google Scholar 

  • Monson, M. P. (1996). The caddisflies of the Lake Itasca region of Minnesota (Insecta: Trichoptera). In R. W. Holzenthal, & O. S. Flint, Jr. (Eds.), Proceedings of the 8th International Symposium on Trichoptera, 09–15 August 1995, Minneapolis, MN (pp. 309–322). Columbus: Ohio Biological Survey.

    Google Scholar 

  • Myers, M. J., & Resh, V. H. (1999). Use of pan traps to collect adult Trichoptera in high desert spring habitats of California, USA. In H. Malicky, & P. Chantaramongkol (Eds.), Proceedings of the 9th International Symposium on Trichoptera, 5–10 January 1998, Chiang Mai, Thailand (pp. 259–267). Chiang Mai: Faculty of Science.

    Google Scholar 

  • Naiman, R. J., Johnston, C. A., & Kelley, J. C. (1988). Alteration of North American streams by beaver. BioScience, 38, 752–762.

    Google Scholar 

  • Nakano, A., & Tanida, K. (1999). Species richness of Trichoptera in mountain streams in Japan: Some practical and statistical tests to reveal the diversity in mother community. In H. Malicky, & P. Chantaramongkol (Eds.), Proceedings of the 9th International Symposium on Trichoptera, 5–10 January 1998, Chiang Mai, Thailand (pp. 271–283). Chiang Mai: Faculty of Science.

    Google Scholar 

  • Økland, R. H. (1996). Are ordination and constrained ordination alternative or complementary strategies in general ecological studies? Journal of Vegetation Science, 7, 289–292.

    Article  Google Scholar 

  • Omernik, J. M. (1977). Nonpoint source-stream nutrient level relationships: a nationwide study. EPA-600/3-77-105.

  • Perkins, S. J. (1994). The shrinking Cedar River: Channel changes following flow regulation and bank armoring. In R. A. Marston, & V. Haffurther (Eds.), Effects of human-induced changes on Hydrologic systems, Proceedings of the American Water Resources Association, Verndon, VA.

  • Petersen, I., Winterbottom, J. H., Orton, S. Friberg, N., Hildrew, A. G., Spiers, D. C., et al. (1999). Emergence and lateral dispersal of adult Plecoptera and Trichoptera from Broadstone Stream, U.K. Freshwater Biology, 42, 401–416.

    Article  Google Scholar 

  • Pringle, C., Vellidis, G., Heliotis, F., Bandacu, D., & Cristofor, S. (1993). Environmental problems for the Danube delta. American Scientist, 81, 350–361.

    Google Scholar 

  • Quinn, J. M. (2000). Effects of pastoral development. In K. J. Collier, & M. J. Winterbourn (Eds.), New Zealand Stream Invertebrates: Ecology and implications for management. Christchurch: Caxton.

    Google Scholar 

  • Rabeni, C. F., & Doisy, K. (2000). Correspondence of stream benthic invertebrate assemblages to regional classification schemes in Missouri. Journal of the North American Benthological Society, 19, 419–428.

    Article  Google Scholar 

  • Resh, V. H. (1993). Recent trends in the use of Trichoptera in water quality monitoring. In C. Otto (Ed.), Proceedings of the 7th International Symposium on Trichoptera, 14–21 August, Umea, Sweden (pp. 285–291). Leiden: Blakhyus.

    Google Scholar 

  • Resh, V. H., Haag, K. H., & Neff, S. E. (1975). Community structure and diversity of caddisfly adults from the Salt River, Kentucky. Environmental Entomology, 4, 241–253.

    Google Scholar 

  • Rosenberg, D. M., & Resh, V. H. (1993). Freshwater biomonitoring and benthic macroinvertebrates. New York: Chapman and Hall.

    Google Scholar 

  • Roth, N. E., Allen, J. D., & Errickson, D. E. (1996). Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecology, 11, 141–156.

    Article  Google Scholar 

  • SAS Institute, Inc. (1989). SAS/STAT User’s guide (4th ed.). Cary, NC: SAS Institute.

    Google Scholar 

  • Sode, A., & Wiberg-Larson, P. (1993). Dispersal of adult Trichoptera at a Danish forest brook. Freshwater Biology, 30, 439–446.

    Article  Google Scholar 

  • Sommerhäuser, M., Koch, P. Robert, B., & Schumacher, H. (1999). Caddisflies as indicators for the classification of riparian systems along lowland streams. In H. Malicky, & P. Chantaramongkol (Eds.), Proceedings of the 9th International Symposium on Trichoptera, 5–10 January 1998, Chiang Mai, Thailand (pp. 337–348). Chiang Mai: Faculty of Science.

    Google Scholar 

  • Sponseller, R. A., Benfield, E. F., & Valett, R. M. (2001). Relationships between land use, spatial scale, and stream macroinvertebrate communities. Freshwater Biology, 46, 1409–1424.

    Article  Google Scholar 

  • Stagliano, D. M., & Whiles, M. R. (2002). Macroinvertebrate production in a pairie stream. Journal of the North American Benthological Society, 21, 97–113.

    Article  Google Scholar 

  • Statzner, B., & Higler, B. (1985). Questions and comments on the river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 42, 1038–1044.

    Google Scholar 

  • Stoner, J. D., Lorenz, D. L., Goldstein, R. M., Brigham, M. E., & Cowdery, T. K. (1998). Water quality in the Red River of the North basin, Minnesota, North Dakota, and South Dakota. U.S. Geological Survey Circular 1169.

  • Stoner, J. D., Lorenz, D. L., Wiche, G. J., & Goldstein, R. M. (1993). Red River of the North basin, Minnesota, North Dakota, and South Dakota. Water Resources Bulletin, 29, 575–615.

    Google Scholar 

  • Ter Braak, C. J. F. (1986). Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 1167–1179.

    Article  Google Scholar 

  • Ter Braak, C. J. F. (1994). Canonical community ordination. Part I: Basic theory and linear methods. Ecoscience, 1, 127–140.

    Google Scholar 

  • Ter Braak, C. J. F., & Prentice, I. C. (1988). A theory of gradient analysis. Advances in Ecological Research, 18, 271–317.

    Google Scholar 

  • Tester, J. R. (1995). Minnesota’s natural heritage, an ecological perspective. Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Townsend, C. R., Dolodec, S., Norris, R., Peacock, K., & Arbuckle, C. (2003). The influence of scale and geography on relationships between stream community composition and landscape variables: Description and prediction. Freshwater Biology, 48, 768–785.

    Article  Google Scholar 

  • Turner, R. E., & Rabalais, N. N. (1991). Changes in Mississippi River water quality this century. Bioscience, 41, 140–147.

    Article  Google Scholar 

  • United States Geological Survey (USGS) (1999). Minnesota land cover data set. Retrieved from<http://edc.usgs.gov/products/landcover/lulc.html>.

  • United States Geological Survey (USGS) (2002). Water Resources of the United States. Retrieved from<http://water.usgs.gov/>.

  • Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130–137.

    Article  Google Scholar 

  • Wang, L., Lyons, J., & Kanehl, P. (2001). Impacts of urbanization on stream habitat and fish across multiple spatial scales. Environmental Management, 28, 255–166.

    Article  Google Scholar 

  • Wang, L., Lyons, J., Kanehl, P., & Gatti, R. (1997). Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries, 22, 6–12.

    Article  Google Scholar 

  • Wang, L., Lyons, J., Rasmussen, P, & Seelbach, P. (2003). Watershed, reach, and riparian influences on stream fish assemblages in the Northern Lakes and Forest Ecoregion, USA. Canadian Journal of Fisheries and Aquatic Sciences, 60, 491–505.

    Article  Google Scholar 

  • Waringer, J. A. (1989). The abundance and temporal distribution of caddisflies (Insecta: Trichoptera) caught by light traps on the Austrian Danube from 1986 to 1987. Freshwater Biology, 21, 387–399.

    Article  Google Scholar 

  • Waringer, J. A. (1991). Phenology and the influence of meteorological parameters on the catching success of light-trapping for Trichoptera. Freshwater Biology, 25, 307–319.

    Article  Google Scholar 

  • Whiles, M. R., Brock, B. L., Franzen, A. C., & Dinsmore, S. C. (2000). Stream invertebrate communities, water quality, and land-use patterns in an agricultural drainage basin of northeastern Nebraska, USA. Environmental Management, 26, 563–576.

    Article  Google Scholar 

  • Wiggins, G. B. (1996a). Larvae of the North American caddisfly genera (Trichoptera) (2nd edn.). Ontario: University of Toronto Press.

    Google Scholar 

  • Wiggins, G. B. (1996b). Trichoptera families. In R. W. Merrit, & K. W. Cummins (Eds.), An introduction to the aquatic insects of North America (pp. 309–349). Dubuque, IA.: Kendall/Hunt.

    Google Scholar 

  • Wiley, M. J., Osborne, L. L., & Larimore, R. W. (1990). Longitudinal structure of an agricultural prairie river system and its relationship to current stream ecosystem theory. Canadian Journal of Fisheries and Aquatic Sciences, 47, 373–384.

    Article  Google Scholar 

  • Williams, P., Whitfield, M., Biggs, J., Bray, S., Fox, G., Nicolet, P., et al. (2003). Comparative biodiversity of rivers, streams, ditches, and ponds in an agricultural landscape in southern England. Biological Conservation, 115, 329–341.

    Article  Google Scholar 

  • Wilzbach, M. A., Cummins, K. W., & Knapp, R. A. (1988). Towards a functional classification of stream invertebrate drift. Internationale Vereinigung Für Theoretische und Angewandte Limnologie, 23, 1244–1254.

    Google Scholar 

  • Zimmerman, J. K., Vondracek, B., & Westra, J. V. (2003). Agricultural land use effects on sediment loading and fish assemblages in two Minnesota (USA) watersheds. Environmental Management, 32, 93–105.

    Article  Google Scholar 

  • Zweig, L. D., & Rabeni, C. F. (2001). Biomonitoring effects of deposited sediment in streams. Journal of the North American Benthological Society, 20, 643–657.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Houghton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houghton, D.C. The effects of landscape-level disturbance on the composition of Minnesota caddisfly (Insecta: Trichoptera) trophic functional groups: evidence for ecosystem homogenization. Environ Monit Assess 135, 253–264 (2007). https://doi.org/10.1007/s10661-007-9647-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-007-9647-9

Keywords

Navigation