Skip to main content

Advertisement

Log in

Optimising vegetation monitoring. A case study in A French lowland forest

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Biodiversity monitoring surveys are rarely optimised statistically before being initiated. Here, we optimised the monitoring of plants in a temperate forest. The total inventory cost, the number and size of quadrats were optimised to detect a 10% change in species richness over 5 years with α = β = 0.05, using data from ongoing long-term floristic monitoring programs. The procedure showed that the inventory cost would be ca 15% lower using 100-, 200-m2 quadrats instead of 300- or 400-m2 quadrats. Despite the cost associated with the optimisation (e.g. gathering preliminary data) and the imprecise estimates (due to the typically small sample size of the pilot studies), optimisation would often be a better option than expert opinion when designing a monitoring survey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archaux, F., Gosselin, F., Bergès, L., & Chevalier, R. (2006). Effects of sampling time, quadrat richness and observer on exhaustiveness of plant censuses. Journal of Vegetation Science, 17, 299–306.

    Article  Google Scholar 

  • Baguley, T. (2004). Understanding statistical power in the context of applied research. Applied Ergonomics, 35, 73–80.

    Article  Google Scholar 

  • Bartsch, L. A., Richardson, W. B., & Naimo, T. J. (1998). Sampling benthic macroinvertebrates in a large flood-plain river: considerations of study design, sample size, and cost. Environmental Monitoring and Assessment, 52, 425–439.

    Article  Google Scholar 

  • Camaret, S., Bourjot, L., & Dobremez, J.-F. (2004). Suivi de la composition floristique des placettes du réseau (1994/95–2000) et élaboration d’un programme d’assurance qualité intensif. Office National des Forêts, Fontainebleau, France.

  • Carlson, M., & Schmiegelow, F. (2002). Cost-effective sampling design applied to large-scale monitoring of boreal birds. Conservation Ecology, 6, 2–11.

    Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. 2nd edn,. New Jersey: Lawrence Erlbaum.

    Google Scholar 

  • Di Stefano, J. (2003). How much power is enough? Against the development of an arbitrary convention for statistical power calculations. Functional Ecology, 17, 707–709.

    Article  Google Scholar 

  • Dupont, W. D. (1988). Power calculations for matched case-control studies. Biometrics, 44, 1157–1168.

    Article  CAS  Google Scholar 

  • ECC (1979). Birds Directive 79/409/ECC on the conservation of wild birds. Belgium: Brussels.

    Google Scholar 

  • ECC (1992). Habitats Directive 92/43/ECC on the conservation of natural habitats and of wild fauna and flora. Belgium: Brussels.

    Google Scholar 

  • ECC (1998). European Community Biodiversity Strategy, Communication COM (98) 42. Belgium: Brussels.

    Google Scholar 

  • Evans, T. D., & Viengkham, O. V. (2001). Inventory time-cost and statistical power: a case study of a Lao rattan. Forest Ecology and Management, 150, 313–322.

    Article  Google Scholar 

  • Hatch, S. A. (2003). Statistical power for detecting trends with applications to seabird monitoring. Biological Conservation, 111, 317–329.

    Article  Google Scholar 

  • Heidelbaugh, W. S., & Nelson, W. G. (1996). A power analysis of methods for assessment of change in seagrass cover. Aquatic Botany, 53, 227–233.

    Article  Google Scholar 

  • Hochbichler, E., O’Sullivan, A., van Hees, A., & Vendekerkhove, K. (2000). Cost Action E4: forest reserves research network. Recommendations for data collection in forest reserves, with an emphasis on regeneration and stand structure. Final report of working group II. European Forest Institute, Joensuu, Finland.

  • Kendall, W. L., Peterjohn, B. G., & Sauer, J. R. (1996). First-time observer effects in the North American breeding bird survey. Auk, 113, 823–829.

    Google Scholar 

  • Kirby, K. J., Bines, T., Burn, A., Mackintosh, J., Pitkin, P., & Smith, I. (1986). Seasonal and observer differences in vascular plant records from British woodlands. Journal of Ecology, 74, 123–132.

    Article  Google Scholar 

  • Klimeš, L., Dancák, M., Hájek, M., Jongepierová, I., & Kucera, T. (2001). Scale-dependent biases in species counts in a grassland. Journal of Vegetation Science, 12, 699–704.

    Article  Google Scholar 

  • Klironomos, J. N., Rillig, M. C., & Allen, M. F. (1999). Designing belowground field experiments with the help of semi-variance and power analyses. Applied Soil Ecology, 12, 227–238.

    Article  Google Scholar 

  • Legendre, P. (1993). Spatial autocorrelation: trouble or new paradigm? Ecology, 74, 1659–1673.

    Article  Google Scholar 

  • Legendre, P., Dale, M. R., Fortin, M. J., Gurevitch, J., Hohn, M., & Myers, D. (2002). The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography, 25, 601–615.

    Article  Google Scholar 

  • Lovell, B., McKelvie, I. D., & Nash, D. (2001). Sampling design for total and filterable reactive phosphorus monitoring in a lowland stream: considerations of spatial variability, measurement uncertainty and statistical power. Journal of Environmental Monitoring, 3, 463–468.

    Article  CAS  Google Scholar 

  • Scott, W. A., & Hallam, C. J. (2002). Assessing species misidentification rates through quality assurance of vegetation monitoring. Plant Ecology, 165, 101–115.

    Article  Google Scholar 

  • Stohlgren, T. J., Falkner, M. B., & Schell, L. D. (1995). A Modified-Whittaker nested vegetation sampling method. Vegetatio, 117, 113–121.

    Article  Google Scholar 

  • Van der Meer, J. (1997). Sampling design of monitoring programmes for marine benthos: A comparison between the use of fixed versus randomly selected stations. Journal of Sea Research, 37, 167–179.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Archaux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Archaux, F., Bergès, L. Optimising vegetation monitoring. A case study in A French lowland forest. Environ Monit Assess 141, 19–25 (2008). https://doi.org/10.1007/s10661-007-9874-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-007-9874-0

Keywords

Navigation