Skip to main content
Log in

Prediction models of CO, SPM and SO2 concentrations in the Campo de Gibraltar Region, Spain: a multiple comparison strategy

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The ‘Campo de Gibraltar’ region is a very industrialized area where very few air pollution studies have been carried out. Up to date, no model has been developed in order to predict air pollutant levels in the different towns spread in the region. Carbon monoxide (CO), Sulphur dioxide (SO2) and suspended particulate matter (SPM) series have been investigated (years 1999–2000–2001). Multilayer perceptron models (MLPs) with backpropagation learning rule have been used. A resampling strategy with two-fold crossvalidation allowed the statistical comparison of the different models considered in this study. Artificial neural networks (ANN) models were compared with Persistence and ARIMA models and also with models based on standard Multiple Linear Regression (MLR) over test sets with data that had not been used in the training stage. The models based on ANNs showed better capability of generalization than those based on MLR. The designed procedure of random resampling permits an adequate and robust multiple comparison of the tested models. Principal component analysis (PCA) is used to reduce the dimensionality of data and to transform exogenous variables into significant and independent components. Short-term predictions were better than medium-term predictions in the case of CO and SO2 series. Conversely, medium-term predictions were better in the case of SPM concentrations. The predictions are significantly promising (e.g., d SPM 24-ahead = 0.906, d CO 1-ahead = 0.891, d SO2 1-ahead = 0.851).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford: Oxford University Press.

    Google Scholar 

  • Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis, forecasting and control pp. 131–164. San Francisco, CA: Holden-Day 137.

    Google Scholar 

  • Chelani, A. B., Chalapati Rao, C. V., Phadke, K. M., & Hasan, M. Z. (2002). Prediction of sulphur dioxide concentration using artificial neural networks. Environmental Modelling and Software, 17, 161–168.

    Google Scholar 

  • Cobb, G. W. (1998). Introduction to design and analysis of experiments. New York: Springer.

    Google Scholar 

  • Comrie, A. C., & Diem, J. E. (1999). Climatology and forecast modelling of ambient carbon monoxide in Phoenix, Arizona. Atmospheric Environment, 33, 5023–5036.

    Article  Google Scholar 

  • Corani, G. (2005). Air quality prediction in Milan: feed-forward neural networks, pruned neural networks and lazy learning. Ecollogical Modelling, 185, 513–529.

    Article  Google Scholar 

  • Dietterich, T. G. (1998). Approximate statistical test for comparing supervised classification learning algorithms. Neural Computation, 7(10), 1895–1923.

    Article  Google Scholar 

  • Feelders, A., & Verkooijen, W. (1996). On the statistical comparison of inductive learning methods. Learning from data, Artificial intelligence and statistics V, lecture notes in statistics, vol. 112 (pp. 271–279). Berlin: Springer.

    Google Scholar 

  • Fu, L. (1994). Neural networks in computer intelligence. New York: McGraw-Hill.

    Google Scholar 

  • Gardner, M. W., & Dorling, S. R. (1999). Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmospheric Environment, 33, 709–719.

    Article  CAS  Google Scholar 

  • Geok, S. N., & Singh, H. (1998). Democracy in pattern classifications: combinations of votes from various pattern classifiers. Artificial Intelligence in Engineering, 12, 189–204.

    Article  Google Scholar 

  • Goldberg, M. S., Burnett, R. T., Bailar, J. C., Brook, J., Bonvalot, Y., & Tamblyn, R., et al. (2001). The association between daily mortality and ambient air particle pollution in Montreal, Quebec. Environmental Research, A86, 12–25.

    Article  CAS  Google Scholar 

  • Gonzalez, F. J. (2004). Characterization and source apportionment to atmospheric particulate concentrations in the Campo de Gibraltar region. PhD. thesis. University of Cádiz.

  • Grivas, G., & Chaloulakou, A. (2006). Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece. Atmospheric Environment, 40, 1216–1229.

    Article  CAS  Google Scholar 

  • Gupta, G., Sabaratnam, S., & Dadson, R. (1986). Linear regression analyses of ozone and sulphur dioxide in ambient air. Science of the Total Environment, 50, 209–215.

    Article  CAS  Google Scholar 

  • Hagan, M. T., Demuth, H. B., & Beale, M. H. (1996). Neural network design. Boston, MA: PWS Publishing.

    Google Scholar 

  • Hagan, M. T., & Menhaj, M. (1994). Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5(6), 989–993.

    Article  CAS  Google Scholar 

  • Hochberg, Y., & Tambane, A. C. (1987). Multiple comparison procedures. New York: Wiley.

    Google Scholar 

  • Hofzumahaus, A., Plane, J., Allan, J., Cohen, R., Fried, A., & Hamilton, J. (2006). Analytical techniques for atmospheric measurement. Oxford, UK: Blackwell.

    Book  Google Scholar 

  • Jobson, J. D. (1991). Applied multivariate data analysis.. Springer texts in statistics. New York: Springer.

  • Jollife, I. T. (1986). Principal component analysis. New York: Springer.

    Google Scholar 

  • Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J., & Kolehmainen, M. (2004). Methods for imputation of missing values in air quality data sets. Atmospheric Environment, 38, 2895–2907.

    Article  CAS  Google Scholar 

  • Kukkonen, J., Partanen, L., Karppinen, A., Ruuskanen, J., Junninen, H., & Kolehmainen, M., et al. (2003). Extensive evaluation of neural networks models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki. Atmospheric Environment, 37, 4539–4550.

    Article  CAS  Google Scholar 

  • Masters, T. (1995). Advanced algorithms for neural networks. New York: Wiley.

    Google Scholar 

  • Mitchell, T. (1997). Machine learning. New York: McGraw-Hill.

    Google Scholar 

  • Nagendra, S. M. S., & Khare M. (2004). Artificial neural network based line source models for vehicular exhaust emission predictions of an urban roadway. Transportation Research Part D, 9, 199–208.

    Article  Google Scholar 

  • Nunnari, G., Dorling, S., Schlink, U., Cawley, G., & Foxall, R. (2004). Modelling SO2 concentration at a point with statistical approaches. Environmental Modelling & Software, 19, 887–905.

    Article  Google Scholar 

  • Nunnari, G., Nucifora, A. F. M., & Randieri, C. (1998). The application of neural techniques to the modelling of time-series of atmospheric pollution data. Ecological Modelling, 111, 187–205.

    Article  CAS  Google Scholar 

  • Pelliccioni, A., & Poli, U. (2000). Use of neural net models to forecast atmospheric pollution. Environmental Monitoting and Assessment, 65, 297–304.

    Article  CAS  Google Scholar 

  • Perez, P., Trier, A., & Reyes, J. (2000). Prediction of PM2,5 concentrations several hours in advance using neural networks in Santiago, Chile. Atmospheric Environment, 34, 1189–1196.

    Article  CAS  Google Scholar 

  • Pizarro, J., Guerrero, E., & Galindo, P. (2002). Multiple comparison procedures applied to model selection. Neurocomputing, 48, 155–173.

    Article  Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes in C, 2nd edition. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Rodriguez, S., Querol, X., Alastuey, A., Kallos, G., & Kakaliagou, O. (2001). Saharan dust contributions to PM10 and TSP levels in Southern and Eastern Spain. Atmospheric Environment, 35, 2433–2447.

    Article  CAS  Google Scholar 

  • Ruiz Suárez, J. C., Mayorra-Ibarra, O. A., Torres-Jiménez, J., & Ruiz Suárez, L. G. (1995). Short-term ozone forecasting by artificial neural networks. Advances in Engineering Software, 23, 143–149.

    Article  Google Scholar 

  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representation by error propagation. Parallel distributed processing: explorations in the microstructures of cognition, Vol.1. Cambridge, MA: MIT Press.

    Google Scholar 

  • Sakamoto, K., Takada, H., & Sekiguchi, K. (2004). Influence of ozone, relative humidity and flow rate on the deposition and oxidation of sulphur dioxide on yellow sand. Atmospheric Environment, 38, 6961–6967.

    Article  CAS  Google Scholar 

  • Schwartz, J., Dockery, D. W., & Neas, L. M. (1996). Is daily mortality associated specifically with fine particles? Journal of Air Waste Management, 46, 927–939.

    CAS  Google Scholar 

  • Vapnik, V. N., & Chervonenkis, A.Ya. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications, 16(2), 264–280.

    Article  Google Scholar 

  • Viotti, P., Liuti, G., & Di Genova, P. (2002). Atmospheric urban pollution: applications of an artificial neural network (ANN) to the city of Perugia. Ecological Modelling, 148, 27–46.

    Article  CAS  Google Scholar 

  • Wilson, W. E., & Suh, H. H. (1997). Fine and coarse particles: concentration relationships relevant to epidemiological studies. Journal of Air Waste Management, 47, 1238–1249.

    CAS  Google Scholar 

  • Yildirim, Y., & Bayramoglu, M. (2006). Adaptive neuro-fuzzy based modelling for prediction of air pollution daily levels in city of Zonguldak. Chemosphere, 63, 1575–1582.

    Article  CAS  Google Scholar 

  • Ziomas, I. C., Melas, D., Zerefos, C. S., Bais, A. F., & Paliatsos, A. G. (1995). Forecasting peak pollutant levels from meteorological variables. Atmospheric Environment, 29(24), 3703–3711.

    Article  CAS  Google Scholar 

  • Zucchini, W. (2000). An introduction to model selection. Journal of Mathematical Psychology, 44, 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio J. Turias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turias, I.J., González, F.J., Martin, M.L. et al. Prediction models of CO, SPM and SO2 concentrations in the Campo de Gibraltar Region, Spain: a multiple comparison strategy. Environ Monit Assess 143, 131–146 (2008). https://doi.org/10.1007/s10661-007-9963-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-007-9963-0

Keywords

Navigation