Skip to main content

Advertisement

Log in

Analyzing deforestation rates, spatial forest cover changes and identifying critical areas of forest cover changes in North-East India during 1972–1999

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Deforestation is recognized as one of the most significant component in LULC and global changes scenario. It is imperative to assess its trend and the rates at which it is occurring. The changes will have long-lasting impact on regional climate and in turn on biodiversity. In North-East India, one of the recognized global biodiversity hotspots, approximately 30% of total forest cover is under pressure of rapid land use changes. This region harbors variety of rare and endemic species of flora and fauna. It also has a strong bearing on regional climatic conditions. Extensive shifting cultivation, compounded by increasing population pressure and demands for agriculture land are the prime drivers in addition to other proximate drivers of deforestation. It is therefore of prime concern to analyse forest cover changes in the region, assess rate of change and extent and to identify the areas, which show repetitive changes. We analyzed forest cover maps from six temporal datasets based on satellite data interpretation, converted to geospatial database since 1972 till 1999. The states of Meghalaya, Nagaland and Tripura show highest changes in forest cover. Arunachal Pradesh shows least dynamic areas and maintains a good forest cover owing to its topographical inaccessibility in some areas. The present study reports the forest cover changes in the region using geospatial analysis and analyse them to devise proper management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Apan, A. A. & Peterson, J. A (1998). Probing tropical deforestation – the use of GIS and statistical analysis of georeferenced data. Applied Geography (Sevenoaks, England), 18(2), 137–152. doi:10.1016/S0143-6228(98)00004-6.

    Article  Google Scholar 

  • Armenteras, D., Gast, F., & Villareal, H. (2003). Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes, Colombia. Biological Conservation, 113(2), 245–256. doi:10.1016/S0006-3207(02)00359-2.

    Article  Google Scholar 

  • Armenteras, D., Rudas, G., Rodriguez, N., Sua, S., & Romero, M. (2006). Pattern and cause of deforestation in Columbian Amazon. Ecological Indicators, 6, 353–368.

    Article  Google Scholar 

  • Behera, M. D., Kushwaha, S. P. S., & Roy, P. S. (2005). Rapid assessment of biological richness in a part of Eastern Himalaya: An integrated three-tier approach. Forest Ecology and Management, 207(3), 363–384. doi:10.1016/j.foreco.2004.10.070.

    Article  Google Scholar 

  • Boege, E. (2001). Protegiendo lo Nuestro. CONABIO-UNAM, Mexico, DF.

    Google Scholar 

  • Burgess, J. C. (1993). Timber production, timber trade and tropical deforestation. Ambio, 22(2–3), 136–143.

    Google Scholar 

  • Champion, H. G., & Seth, S. K. (1968). A revised survey of forest types of India. New Delhi: New Delhi Govt. Publication.

    Google Scholar 

  • Chowdhury, R. R. (2006). Driving forces of tropical deforestation: The role of remote sensing and spatial models. Singapore Journal of Tropical Geography, 27(1), 82–101. doi:10.1111/j.1467–9493.2006.00241.x.

    Article  Google Scholar 

  • Comber, A. J., Fisher, P. F., & Wadsworth, R. A.(2003). Identifying land cover change using a semantic statistical approach: First results. In Proceedings of the Seventh International Conference on GeoComputation (pp. 8–10). University of Southampton, UK.

    Google Scholar 

  • Conservation International (2005). Biodiversity Hotspots. Himalaya. http://www.biodiversityhotspots.org/xp/Hotspots/himalaya. Accessed 4 May 2007.

  • FAO (1993). Forest resource division, forest assessment 1990. Rome: Tropical Countries, FAO.

    Google Scholar 

  • Fearnside, P. M. (2001). Saving tropical forests as a global warming countermeasure: An issue that divides the environmental movement. Ecological Economics, 39(2), 167–184. doi:10.1016/S0921–8009(01)00225–7.

    Article  Google Scholar 

  • Foley, J. A., DeFries, R., Asner, G. P., et al. (2005). Global consequences of land use. Science, 309, 570–574. doi:10.1126/science.1111772.

    Article  CAS  Google Scholar 

  • Foster, D. R. (1992). Land-use history (1730–1900) and vegetation dynamics in central New England. Journal of Ecology, 80(4), 753–771. doi:10.2307/2260864.

    Article  Google Scholar 

  • FSI (Forest survey of India) (1999). State of forest report 1999. Dehradun: Forest survey of India.

    Google Scholar 

  • FSI (Forest survey of India) (2001). State of forest report 2001. Dehradun: Forest survey of India.

    Google Scholar 

  • FSI (Forest survey of India) (2003). State of forest report 2003. Dehradun: Forest survey of India.

    Google Scholar 

  • Fuller, R. M., Smith, G. M., & Devereux, B. J. (2003). The characterization and measurement of land cover change through remote sensing: Problems in operational applications? International Journal of Applied Earth Observation and Geoinformatics, 4(3), 243–253.

    Article  Google Scholar 

  • Geist, H. J., & Lambin, E. F. (2002). Proximate causes and underlying driving forces of tropical deforestation. Bioscience, 52(2), 143–149. doi:10.1641/0006–3568(2002)052[0143:PCAUDF]2.0.CO;2.

    Article  Google Scholar 

  • Geist, H. J., & Lambin, E. F. (2004). Dynamic causal patterns of desertification. Bioscience, 54(9), 817–829. doi:10.1641/0006–3568(2004)054[0817:DCPOD]2.0.CO;2.

    Article  Google Scholar 

  • Gupta, H. K. (2007). Deforestation and forest cover changes in the Himachal Himalaya, India. International Journal of Ecology and Environmental Sciences, 33(2–3), 207–218.

    Google Scholar 

  • Hall, F. G., Botkin, D. B., Strebel, D. E., Woods, K. D., & Goetz, S. J. (1991). Large-scale patterns of forest succession as determined by remote sensing. Ecology, 72(2), 628–640. doi:10.2307/2937203.

    Article  Google Scholar 

  • Heywood, V. H., & Watson, R. T. (1995). Global biodiversity assessment, UNEP. Cambridge: Cambridge University Press.

    Google Scholar 

  • IIRS (2002a). Biodiversity characterization at landscape level in eastern Himalayas using satellite remote sensing and geographic information systems. Indian institute of remote sensing. National Remote Sensing Agency, Department of Space, Government of India. Dehra Dun.

    Google Scholar 

  • IIRS (2002b). Biodiversity characterization at landscape level in western Ghats India using satellite remote sensing and geographic information systems. Indian Institute of Remote Sensing. National Remote Sensing Agency, Department of Space, Government of India. Dehra Dun.

    Google Scholar 

  • IIRS (2002c). Biodiversity characterization at landscape level in Andamans and Nikobar islands using satellite remote sensing and geographic information systems. Indian Institute of Remote Sensing. National Remote Sensing Agency, Department of Space, Government of India. Dehra Dun.

    Google Scholar 

  • Krishnaswamy, J., Kiran, M. C., & Ganeshaiah, K. N. (2004). Tree model based eco-climatic vegetation classification and fuzzy mapping in diverse tropical deciduous ecosystems using multi-season NDVI. International Journal of Remote Sensing, 25(6), 1185–1205. doi:10.1080/0143116031000149989.

    Article  Google Scholar 

  • Joshi, P. K., Lele, N., & Aggarwal, S. P. (2006a). Entropy as an indicator of fragmented landscape-Northeast India case study. Current Science, 91(3), 276–278.

    Google Scholar 

  • Joshi, P. K., Roy, P. S., Singh, S., Agrawal, S., & Yadav, D. (2006b). Characterization of vegetation cover in India, using multi-temporal IRS Wide Field Sensor (WiFS) data. Remote Sensing of Environment, 103(2), 190–202. doi:10.1016/j.rse.2006.04.010.

    Article  Google Scholar 

  • Keys, E., & McConnell, W. J. (2005). Global change and the intensification of agriculture in the tropics. Global Environmental Change, 15, 320–327. doi:10.1016/j.gloenvcha.2005.04.004.

    Article  Google Scholar 

  • Lambin, E. F., Baulies, X., Bockstael, N., et al. (1999). Land-use and land-cover change (LUCC): Implementation strategy. IGBP Report No. 48/IHDP Report No. 10. IGBP/IHDP, Stockholm and Bonn.

  • Lambin, E. F., Geist, H. J., & Lepers, E. (2003). Dynamics of land-use and cover change. Annual Review of Environment and Resources, 28, 205–241. doi:10.1146/annurev.energy.28.050302.105459.

    Article  Google Scholar 

  • Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., et al. (2001). The causes of land-use and landcover change: Moving beyond the myths. Global Environmental Change, 11(4), 261–269. doi:10.1016/S0959-3780(01)00007-3.

    Article  Google Scholar 

  • Lele, N., Joshi, P. K., & Aggarwal, S. P. Assessing forest fragmentation in northeastern region (NER) of India using landscape matrices. Ecological Indicators, 8, 657–663. doi:10.1016/j.ecolind.2007.10.002. (in press).

  • Lele, N., Joshi, P. K., & Aggarwal, S. P. (2007). Fractional vegetation cover analysis for understanding vegetation cover dynamics in Northeast India. International Journal of Geoinformatics, 1(3), 63–70.

    Google Scholar 

  • Maki, S., Kalliola, R., & Vuorinen, K. (2001). Road construction in the Peruvian Amazon: Process, causes and consequences. Environmental Conservation, 28, 199–214.

    Article  Google Scholar 

  • Mas, J. F., Velázquez, A., Díaz-Gallegos, J. R., Sauced, R. M., Alcántara, C., Bocco, G., et al. (2004). Assessing land use/cover changes: A nationwide multidate spatial database for Mexico. International Journal of Applied Earth Observations and Geoinformation, 5(4), 249–261. doi:10.1016/j.jag.2004.06.002.

    Article  Google Scholar 

  • Mertens, B., & Lambin, E. F. (2000). Land-cover-change trajectories in Southern Cameroon. Annals of the Association of American Geographers. Association of American Geographers, 90, 467–494. doi:10.1111/0004-5608.00205.

    Article  Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B., & Ken, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858. doi:10.1038/35002501.

    Article  CAS  Google Scholar 

  • Nagendra, H., Southworth, J., & Tucker, C. (2003). Accessibility as a determinant of landscape transformation in western Honduras: Linking pattern and process. Landscape Ecology, 18, 141–158. doi:10.1023/A:1024430026953.

    Article  Google Scholar 

  • National Remote Sensing Agency (1983). Report of nationwide mapping of forest and non-forest areas using Landsat False Color Composite for period 1972–75 and 1982–85.

  • Noss, R. F. (2001). Beyond Kyoto: Forest management in a time of rapid climate change. Conservation Biology, 15(3), 578–590. doi:10.1046/j.1523-1739.2001.015003578.x.

    Article  Google Scholar 

  • Ojima, D. S., Galvin, K. A., & Turner, B. L., II. (1994). The global impact of land-use change. Bioscience, 44(5), 300–304. doi:10.2307/1312379.

    Article  Google Scholar 

  • Pandit, M. K., Sodhi, N., Pin Koh, L., Bhaskar, A., & Brook, B. (2007). Unreported yet massive deforestation driving loss of endemic biodiversity in Indian Himalaya. Biodiversity and Conservation, 16, 153–163. doi:10.1007/s10531-006-9038-5.

    Article  Google Scholar 

  • Peterson, T. A., Ortega, M. A., Bartley, J., Sanchez, V., Soberon, J., Buddemeier, R. H., et al. (2002). Future projections for Mexican faunas under global climate change scenarios. Nature, 416, 626–629. doi:10.1038/416626a.

    Article  CAS  Google Scholar 

  • Petit, T., & Scudder, E. L. (2001). Quantifying processes of land-cover change by remote sensing: Resettlement and rapid land-cover changes in south-eastern Zambia. International Journal of Remote Sensing, 22, 3435–3456. doi:10.1080/01431160010006881.

    Article  Google Scholar 

  • Petit, C. C., & Lambin, E. F. (2002). Long-term land-cover changes in Belgian Ardennes (1775–1929): Model based reconstruction vs. historical maps. Global Change Biology, 8(7), 616–630. doi:10.1046/j.1365-2486.2002.00500.x.

    Article  Google Scholar 

  • Ramesh, B. R., Pascal, J. P., & Nouguier, C. (1997). Atlas of Endemics of the Western Ghats. Distribution of tree species in the evergreen and semi-evergreen forests. Pondicherry: French Institute.

    Google Scholar 

  • Roughgarden, J., Running, S. W., & Matson, P. A. (1991). What does remote sensing do for ecology? Ecology, 72(6), 1918–1922. doi:10.2307/1941546.

    Article  Google Scholar 

  • Roy, P. S., & Joshi, P. K. (2002). Forest cover assessment in north-east India – the potential of temporal wide swath satellite sensor data (IRS-1C WiFS). International Journal of Remote Sensing, 23(22), 4881–4896. doi:10.1080/01431160110114475.

    Article  Google Scholar 

  • Roy, P. S., & Tomar, S. (2000). Biodiversity characterization at landscape level using geospatial modelling technique. Biological Conservation, 95(1), 95–109. doi:10.1016/S0006-3207(99)00151-2.

    Article  Google Scholar 

  • Sherbinin, A., Carr, D., Cassels, S., Jiang, L. (2007). Population and environment. Annual Review of Environment and Resources, 32, 5.1–5.29.

    Article  Google Scholar 

  • Shukla, J., Nobre, C., & Sellers, P. (1990). Amazon deforestation and climate change. Science, 247, 1322–1325. doi:10.1126/science.247.4948.1322.

    Article  Google Scholar 

  • Sodhi, N. S., & Brook, B. W. (2006). Southeast Asian biodiversity in crisis. London, UK: Cambridge University Press.

    Google Scholar 

  • Southworth, J., Nagendra, H., & Tucker, C. (2002). Fragmentation of a Landscape: Incorporating landscape metrics into satellite analyses of land-cover change. Landscape Research, 27(3), 253–269. doi:10.1080/01426390220149511.

    Article  Google Scholar 

  • Turner, B. L., Skole, D., Sanderson, S., et al. (1995). Land use and land-cover change science/research plan. IGBP Report No. 35/HDP Report No. 7. IGBP/IHDP, Stockholm/Geneva.

  • Wakeel, A., Rao, K. S., Maikhuri, R. K., & Saxena, K. G. (2005). Forest management and land use/cover changes in a typical micro watershed in the mid elevation zone of Central Himalaya, India. Forest Ecology and Management, 213(1–3), 229–242. doi:10.1016/j.foreco.2005.03.061.

    Article  Google Scholar 

  • Wood, C. H., & Skole, D. L. (1998). Linking satellite, census, and survey data to study deforestation in the Brazilian Amazon. In D. Liverman, et al. (Eds.), People and pixels: Linking remote sensing and social science (pp. 70–93). Washington, DC: National Academy Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Lele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lele, N., Joshi, P.K. Analyzing deforestation rates, spatial forest cover changes and identifying critical areas of forest cover changes in North-East India during 1972–1999. Environ Monit Assess 156, 159–170 (2009). https://doi.org/10.1007/s10661-008-0472-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0472-6

Keywords

Navigation