Skip to main content
Log in

Distribution and speciation of selected metals in surface sediments, from the tropical Zuari estuary, central west coast of India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Estuarine sediments are major reservoirs for the metals. Distribution and mobility of metals within estuaries depends strongly on their specific chemical form. In the present study, surface sediments from Zuari estuary, Goa were analysed by a sequential procedure for Fe, Mn, Cu, Zn, Cr and Co to determine their distribution in five geochemical phases (Exchangeable, carbonate, Fe–Mn oxide (reducible) organic bound (oxidisable) and residual). The total metal content, sand, silt, clay and organic carbon were also determined of the surface sediments. The total metal contents were found to be greater than the background concentrations of average shale values as well as to that of earlier studies indicating enrichment probably due to the anthropogenic origin of metals. The results obtained from sequential procedure showed that among the studied elements, Mn and Co are potentially available in the bioavailable fractions (exchangeable, carbonate and Fe–Mn oxide bound fractions) indicating their importance in toxicity whereas rest of the metals viz. Fe, Cu, Zn and to some extent Cr are largely available in residual phase although they are available in other fractions. The main source of metals to the estuary is mining and its associated activities in the study area. Chemical speciation by sequential extraction procedure has helped in assessing the mobility, bioavailability, diagenesis and toxicity of metals and hence giving a better insight into the ultimate fate of pollutants, which are introduced into the estuarine environment. To understand the risk of the metals to the sediment dwelling organisms the data were compared with the Sediment Quality Values (SQV) using SQUIRT. Also, correlation and Factor analysis were carried out to understand the associations of metals in the different fractions with sand, silt, clay, organic carbon and with other metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Algan, O., Balkis, N., Cagatay, M. N., & Sari, E. (2004). The sources of metal contents in the shelf sediments from the Marmara Sea, Turkey. Environmental Geology, 46, 932–950. doi:10.1007/s00254-004-1104-2.

    Article  CAS  Google Scholar 

  • Badri, M. A., & Aston, S. R. (1983). Observations on heavy metal geochemical associations on polluted and non polluted estuarine sediments. Environmental Pollution, B6, 181–193.

    Google Scholar 

  • Baeyens, W., Monteny, F., Leermaakers, M., & Boullion, S. (2003). Evaluation of sequential extractions on dry and wet sediments. Analytical and Bioanalytical Chemistry, 376, 890–901. doi:10.1007/s00216-003-2005-z.

    Article  CAS  Google Scholar 

  • Banerjee, A. D. K. (2003). Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environmental Pollution, 123, 95–105. doi:10.1016/S0269-7491(02)00337-8.

    Article  CAS  Google Scholar 

  • Bendell-Young, L. I., & Harvey, H. H. (1992). The relative importance of manganese and iron oxides and organic matter in the sorption of trace metals by surficial lake sediments. Geochimica et Cosmochimica Acta, 56, 1175–1186. doi:10.1016/0016-7037(92)90055-N.

    Article  Google Scholar 

  • Binning, K., & Baird, D. (2001). Survey of heavy metals in the sediments of the Swartkops River Estuary, Port Elizabeth South Africa. Water S.A, 27(4), 461–466.

    CAS  Google Scholar 

  • Buchman, M. F. (1999). NOAA screening quick reference tables. NOAA HAZMAT Report 99-1, (p. 12). Seattle, WA, Coastal Protection and Restoration Division, National Oceanic and Atmospheric Administration.

  • Calmano, W., & Forstner, U. (1983). Chemical extraction of heavy metals in polluted river sediments in central Europe. The Science of the Total Environment, 28, 77–90. doi:10.1016/S0048-9697(83)80009-6.

    Article  CAS  Google Scholar 

  • Campbell, P. G. C. (1995). Interactions between trace metals and aquatic organisms: A critique of the free-ion activity model. In A. Tessier, & D. Turner (Eds.), Metal speciation and bioavailability in aquatic systems (pp. 45–102). England: Wiley.

    Google Scholar 

  • Canfield, D. E. (1989). Reactive iron in marine sediments. Geochimica et Cosmochimica Acta, 53, 619–632. doi:10.1016/0016-7037(89)90005-7.

    Article  CAS  Google Scholar 

  • Demirbas, A., Pehlivan, E., Gode, F., Altun, T., & Arslan, G. (2005). Adsorption of Cu(II), Zn(II), Ni(II), Pb(II), and Cd(II) from aqueous solution on Amberlite IR-120 synthetic resin. Journal of Colloid and Interface Science, 282, 20–25. doi:10.1016/j.jcis.2004.08.147.

    Article  CAS  Google Scholar 

  • Dollar, N. L., South, C. J., Filippelli, G. M., & Mastalerz, M. (2001). Chemical fractionation of metals in wetland sediments: Indiana dunes national lakeshore. Environmental Science & Technology, 35, 3608–3615. doi:10.1021/es0105764.

    Article  CAS  Google Scholar 

  • Eary, L. E., & Rai, D. (1988). Chromate removal from aqueous wastes by reduction with ferrous ion. Environmental Science & Technology, 22(8), 972–977. doi:10.1021/es00173a018.

    Article  CAS  Google Scholar 

  • Forstner, U., & Wittmann, G. T. W. (1979). Metal pollution in aquatic environment. Berlin: Springer.

    Google Scholar 

  • Frignani, M., & Belluci, L. G. (2004). Heavy metals in marine coastal sediments: Assessing sources, fluxes, history and trends. Annali di Chimica, 94, 1–8. doi:10.1002/adic.200490061.

    Article  Google Scholar 

  • Gonzalez, M. J., Ramos, L., & Hernandez, L. M. (1994). Distribution of trace metals in sediments and their relationship with their accumulation in earthworms. International Journal of Environmental Analytical Chemistry, 57, 135–150. doi:10.1080/03067319408027419.

    Article  CAS  Google Scholar 

  • Helz, G. R., Hugget, R. J., & Hill, J. M. (1975). Behaviour of Mn, Fe, Cu, Zn, Cd and Pb discharged from a wastewater treatment plant into an estuarine environment. Water Research, 9, 631–636. doi:10.1016/0043-1354(75)90168-2.

    Article  CAS  Google Scholar 

  • Hseu, Z. Y. (2006). Extractability and bioavailability of zinc over time in three tropical soils incubated with biosolids. Chemosphere, 63, 762–771. doi:10.1016/j.chemosphere.2005.08.014.

    Article  CAS  Google Scholar 

  • Huerta-Diaz, M. A., & Morse, J. W. (1992). Pyritisation of trace metals in anoxic marine sediments. Geochimica et Cosmochimica Acta, 56, 2681–2702. doi:10.1016/0016-7037(92)90353-K.

    Article  CAS  Google Scholar 

  • Jackson, M. L. (1958). Soil chemical analysis. New York: Prentice Hall.

    Google Scholar 

  • Jingchun, L., Chongling, Y., Macnair, M. R., Jun, H., & Yuhong, L. (2006). Distribution and speciation of some metals in mangrove sediments from Jiulong River Estuary, People’s Republic of China. Bulletin of Environmental Contamination and Toxicology, 76, 815–822. doi:10.1007/s00128-006-0992-0.

    Article  CAS  Google Scholar 

  • Jiries, A. (2003). Vehicular contamination of dust in Amman, Jordan. The Environmentalist, 23, 205–210. doi:10.1023/B:ENVR.0000017390.93161.99.

    Article  Google Scholar 

  • Jones, B., & Turki, A. (1997). Distribution and speciation of heavy metals in surfacial sediments from the Tees Estuary, North-east England. Marine Pollution Bulletin, 34(10), 768–779. doi:10.1016/S0025-326X(97)00047-7.

    Article  CAS  Google Scholar 

  • Kersten, M., & Forstner, U. (1989). Speciation of trace elements in sediments. In G. E. Batley (Ed.), Trace element speciation: Analytical methods and problems (pp. 243–317). Boca Raton, Florida: CRC.

    Google Scholar 

  • Kuo, S., Heilman, P. E., & Baker, A. S. (1983). Distribution and forms of copper, zinc cadmium, iron and manganese in soils near a copper smelter. Soil Science, 135, 101–119. doi:10.1097/00010694-198302000-00004.

    Article  CAS  Google Scholar 

  • Li, X., Poon, C., & Liu, P. S. (2001). Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 16, 1361–1368. doi:10.1016/S0883-2927(01)00045-2.

    Article  CAS  Google Scholar 

  • Luoma, S. N., & Davis, J. A. (1983). Requirements of modelling trace metal partitioning in oxidised estuarine sediments. Marine Chemistry, 12, 159–181. doi:10.1016/0304-4203(83)90078-6.

    Article  CAS  Google Scholar 

  • Ma, L. Q., & Rao, G. N. (1997). Chemical fractionation of cadmium, copper, nickel and zinc in contaminated soils. Journal of Environmental Quality, 26, 259–264.

    Article  CAS  Google Scholar 

  • Mesquita, A. M., & Kaisary, S. (2007). Distribution of iron and manganese. In S. R. Shetye, M. Dileep Kumar, & D. Shankar (Eds.), The Mandovi and Zuari estuaries (pp. 99–104). Goa, India: NIO.

    Google Scholar 

  • Morel, F. M. M. (1983). Principles of aquatic chemistry. New York: Wiley.

    Google Scholar 

  • Niencheski, L. F. H., Baraj, B., Franca, R. G., & Mirlean, N. (2002). Lithium as a normalizer for the assessment of anthropogenic metal contamination of sediments of the southern area of Patos Lagoon. Aquatic Ecosystem Health & Management, 5, 473–483. doi:10.1080/14634980290001977.

    Article  CAS  Google Scholar 

  • Pedersen, T. F., & Price, N. B. (1982). The geochemistry of manganese carbonate in Panama Basin sediments. Geochimica et Cosmochimica Acta, 46, 59–68. doi:10.1016/0016-7037(82)90290-3.

    Article  CAS  Google Scholar 

  • Petersen, W., Wallmann, K., Li, P. L., Schroeder, F., & Knauth, H. D. (1995). Exchange of trace elements at the sediment–water interface during early diagenesis processes. Marine & Freshwater Research, 46, 19–26.

    CAS  Google Scholar 

  • Pizarro, I., Gomez, M., Camara, C., & Palacios, M. A. (2003). Arsenic speciation in environmental and biological samples. Analytica Chimica Acta, 495, 85–98. doi:10.1016/j.aca.2003.08.009.

    Article  CAS  Google Scholar 

  • Sagar, M. (1992). Chemical speciation and environmental mobility of heavy metals in sediments and soils. In M. Stoeppler (Ed.), Hazardous metals in the environment, techniques and instruments in analytical chemistry (pp. 133–175). Amsterdam: Elsevier.

  • Savvides, C., Papadopoulos, A., Haralambous, K. J., & Loizidou, M. (1995). Sea sediments contaminated with heavy metals: Metals speciation and removal. Water Science and Technology, 32, 65–73. doi:10.1016/0273-1223(96)00077-7.

    Article  CAS  Google Scholar 

  • Singh, K. K. (2000). Studies on distribution of some trace metals in the Mandovi–Zuari estuarine systems of Goa, West Coast of India. M. Phil thesis, Dept of Marine Science, Goa, India.

  • Soon, Y., Wilson, M. J., Moon, H. S., Bacon, J. R., & Basin, D. C. (1999). Chemical and mineralogical forms of lead, zinc and Camden in particle size fractions of some wastes, sediments and soils in Korea. Applied Geochemistry, 14, 621–633. doi:10.1016/S0883-2927(98)00093-6.

    Article  Google Scholar 

  • StatSoft. (1999). Statistica computer program, version 5.5. StatSoft, Tulsa, OK.

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851. doi:10.1021/ac50043a017.

    Article  CAS  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the Earth’s crust. Geological Society of America Bulletin, 72, 175–192. doi:10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2.

    Article  CAS  Google Scholar 

  • Usero, J., Gamero, M., Morillo, J., & Gracia, I. (1998). Comparative study of three sequential extraction procedures for metals in marine sediments. Environmental International, 24, 478–496.

    Article  Google Scholar 

  • Walkey, A. (1947). A critical examination of a rapid method for determining organic carbon in soil. Soil Science, 63, 251–263.

    Google Scholar 

  • Yuan, C., Shi, J., He, B., Liu, J., Liang, L., & Jiang, G. (2004). Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environment International, 30, 769–783. doi:10.1016/j.envint.2004.01.001.

    Article  CAS  Google Scholar 

  • Zhang, J., Huang, W. W., & Martin, J. M. (1988). Trace metals distribution in Huanghe (Yellow River) estuarine sediments. Estuarine, Coastal and Shelf Science, 26, 499–526. doi:10.1016/0272-7714(88)90003-0.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Nayak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dessai, D.V.G., Nayak, G.N. Distribution and speciation of selected metals in surface sediments, from the tropical Zuari estuary, central west coast of India. Environ Monit Assess 158, 117–137 (2009). https://doi.org/10.1007/s10661-008-0575-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0575-0

Keywords

Navigation