Skip to main content
Log in

Water quality assessment near an industrial site of Damodar River, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

An assessment on the water quality parameters coliform including the bacterial abundance from a point source of river Damodar (24°26 N and 86°53 E), West Bengal, India was carried out during the period of 2004–2007. The site received mining and industrial effluents from the collieries and industries. The water samples collected on a monthly basis revealed the presence of the coliform bacteria Escherichia coli and Streptococcus sp., between 2,600 and 20,000 colony-forming unit/100 ml throughout the study period with peak abundance during the months of September to December, the post-monsoon period. The relative abundance of the two bacterial species was found to be y(E. coli) = 1.41x (Streptococcus) − 8.07 and were positively correlated (r = + 0.868, df = 34). Principal component analysis revealed three factors to clarify for the observed variance of the environmental variables. The mean values of the physicochemical parameters of the river water at the sampling sites were consistently higher than the levels specified by WHO and other regulatory bodies and qualify as polluted water. The presence of the coliform bacteria in these water samples warrants for proper measure to reduce the pollution at the point source and proper remediation strategies to combat contamination in the domestic water usage from river Damodar from this site and downstream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acharya, S. K., & Shah, B. A. (2007). Arsenic contaminated groundwater from parts of Damodar fan delta and West of Bhagirathi River, West Bengal, India: Influence of fluvil geomorphology and quarternary morphostratigraphy. Environmental Geology, 52(3), 489–501. doi:10.1007/s00254-006-0482-z.

    Article  Google Scholar 

  • Adamiec, E., & Helios-Rybicka, E. (2002). Distribution of pollutants in the Odra River system part IV. Heavy metal distribution in water of the upper and middle Odra River, 1998–2000. Polish Journal of Environmental Studies, 11(6), 669–673.

    CAS  Google Scholar 

  • Ajibade, L. T. (2004). Assessment of water quality along River Asa, Ilorin, Nigeria. The Environmentalist, 24, 11–18. doi:10.1007/s10661-005-9172-7c.

    Article  Google Scholar 

  • American Public Health Association (APHA) (1998). Standard methods for the examination of water and wastewater (20th ed.) Washington, DC: American Public Health Association.

    Google Scholar 

  • Aruga, R., Negro, G., & Ostacoli, G. (1993). Multivariate data analysis applied to the investigation of river pollution. Fresenius’ Journal of Analytical Chemistry, 346, 968–975. doi:10.1007/BF00322761.

    Article  CAS  Google Scholar 

  • Ayotamuno, M. J. (1994). Studies of pollution by industrial effluents in the rivers state, Nigeria. The International Journal of Environmental Studies, 45(3), 211–216. doi:10.1080/00207239408710895.

    Article  CAS  Google Scholar 

  • Basu, M., & Mitra, A. K. (2002). Studies on the pollution of river Damodar at Burdwan with special reference to metals, COD and pH. Nature Environment and Pollution Technology, 1(4), 397–400.

    CAS  Google Scholar 

  • Bhattacharya, G., Sadhu, A. K., Mazumdar, A., & Chaudhuri, P. K. (2005). Antennal deformities of chironomid larvae and their use in biomonitoring of heavy metal pollutants in the river Damodar of West Bengal, India. Environmental Assessment and Monitoring, 108(1–3), 67–84. doi:10.1007/s10661-005-3963-8.

    Article  Google Scholar 

  • Bhattacharya, G., Sadhu, A. K., Mazumdar, A., Majumdar, U., & Chaudhuri, P. K. (2006). Assessment of impact of heavy metals on the communities and morphological deformities of chironomidae larvae in the river Damodar (India, West Bengal). Acta Hydrobiologica (Cracow), 8(Suppl.), 21–32.

    Google Scholar 

  • Cameron, E. M. (1996). The hydrochemistry of the Fraser River, British Columbia: Seasonal variation in major and minor components. Journal of Hydrology (Amsterdam), 182, 209–215. doi:10.1016/0022-1694(95)02924-9.

    Article  CAS  Google Scholar 

  • Chandra, R., Singh, S., & Raj, A. (2006). Seasonal bacteriological analysis of Gola River water contaminated with pulp paper mill waste in Uttaranchal, India. Environmental Monitoring and Assessment, 118, 393–406. doi:10.1007/s10661-006-1508-4.

    Article  CAS  Google Scholar 

  • Chang, H. (2008). Spatial analysis of water quality trends in the Han River basin, South Korea. Water Research. doi:10.1016/j.watres.2008.04.006.

  • Djuikom, E., Njine, T., Nola, M., Sikati, V., & Jugnia, L.-B. (2006). Microbiological water quality of the Mfoundi River watershed at Yaoundé, Cameroon, as inferred from indicator bacteria of fecal contamination. Environmental Monitoring and Assessment, 122, 171–183. doi:10.1007/s10661-005-9172-7.

    Article  CAS  Google Scholar 

  • Downing, A. L. (1971). Forecasting the effects of polluting discharges on natural waters—I. Rivers. The International Journal of Environmental Studies, 2(1), 101–110. doi:10.1080/00207237108709452.

    Article  Google Scholar 

  • Fujita, T., Komemushi, S., & Yamagat, K. (1987). Relationship between environmental factors, yeats and coliforms in the Yodo River. Journal of Fermentation Technology, G5(2), 193–197. doi:10.1016/0385-6380(87)90164-6.

    Article  Google Scholar 

  • Guissani, B., Monticelli, D., Gambillara, R., Pozzi, A., & Dossi, C. (2008). Three way principal component analysis of chemical data from lake Como watershed. Microchemical Journal, 88(2), 160–166. doi:10.1016/j.microc.2007.11.006.

    Article  Google Scholar 

  • Jain, S. K., Agarwal, P. K., & Singh, V. P. (2007). Hydrology and water resources of India. Dordrecht, The Netherlands: Springer (13-978-1-4020-5180-7, e-book).

    Google Scholar 

  • Jonathan, M. P., Srinivasalu, S., Thangadurai, N., Ayyamperumal, T., Armstrong-Altrin, J. S., & Ram- Mohan, V. (2008). Contamination of Uppanar River and coastal water off Cuddalore, southeast coast of India. Environmental Geology, 53, 1391–1404. doi:10.1007/s00254-007-0748-0.

    Article  CAS  Google Scholar 

  • Kakulu, S. E., & Osibanjo, O. (1992). Pollution studies of Nigerian rivers: Trace metal levels of surface waters in the Niger delta area. The International Journal of Environmental Studies, 41(3), 287–292. doi:10.1080/00207239208710768.

    Article  Google Scholar 

  • Kannel, P. R., Seockhoen, L., Kanel, S. R., Khan, S. P., & Lee, Y.-S. (2007). Spatial–temporal variation and comparative assessment of water qualities of urban river system: A case study of the river Bagmati (Nepal). Environmental Monitoring and Assessment, 129, 433–459. doi:10.1007/s10661-006-9375-6.

    Article  CAS  Google Scholar 

  • Kinnear, P. R., & Gray, C. D. (2000). SPSS for Windows made simple. Release 10. Sussex, UK: Psychology Press.

    Google Scholar 

  • Kistemann, T., Claßen, T., Koch, C., Dangendorf, F., Fischeder, R., Gebel, J., et al. (2002). Microbial load of drinking water reservoir tributaries during extreme rainfall and runoff. Applied and Environmental Microbiology, 68(5), 2188–2197. doi:10.1128/AEM.68.5.2188-2197.2002.

    Article  CAS  Google Scholar 

  • Mahagoub, D. M., & Dirar, H. A. (1986). Microbial pollution of the Blue and White Niles at Khartoum. Environment International, 12, 603–609. doi:10.1016/0160-4120(86)90102-9.

    Article  Google Scholar 

  • Manly, B. F. J. (1994). Multivariate statistical methods: A primer II ed. London, UK: Chapman and Hall.

    Google Scholar 

  • Miller, J. R., & Miller, S. M. O. (2007). Contaminated rivers: A geomorphological and geochemical approach to site assessment and remediation. Dordrecht, The Netherlands: Springer (xiv + 416p. e-book 13-978-1-4020-5602-4).

    Google Scholar 

  • Moiseenko, T. I., Gashkina, N. A., Sharova, Y. N., & Kudryavtseva, L. P. (2008). Ecotoxicological assessment of water quality and ecosystem health: A case study of the Volga River. Ecotoxicology and Environmental Safety. doi:10.1016/j.ecoenv.2008.02.025.

  • Pandit, S., Adhikary, S., & Roy, S. (1996). Species diversity of dipteran community in assessing the water quality of River Damodar at Durgapur, Panagarh and Burdwan in West Bengal. Environment and Ecology, 14, 800–805.

    Google Scholar 

  • Parlak, H., Çakır, A., Boyacıoğlu, M., & Arslan, Ö. Ç. (2006). Heavy metal deposition in sediments from the delta of the Gediz River (Western Turkey): A preliminary study. E.U. Journal of Fisheries & Aquatic Sciences, 23(3–4), 445–448.

    Google Scholar 

  • Pennington, A. T., Harding, A. K., Hendricks, C. W., & Campbell, H. M. K. (2001). Evaluating microbial indicators of environmental condition in Oregon Rivers. Environmental Management, 28(6), 833–841. doi:10.1007/s002670010265.

    Article  CAS  Google Scholar 

  • Sharma, S., Dixit, S., Jain, P., Shah, K. W., & Vishwakarma, R. (2008). Statistical evaluation of hydrobiological parameters of Narmada River water at Hosangabad city, India. Environmental Monitoring and Assessment. doi:10.1007/s10661-007-9968-8.

  • Singh, K. P., Malik, A., Sinha, S., Singh, V. K., & Murthy, R. C. (2005a). Estimation of source of heavy metal contamination in sediments of Gomti river (India) using principal component analysis. Water, Air, and Soil Pollution, 166, 321–341. doi:10.1007/s11270-005-5268-5.

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., & Singh, V. K. (2005b). Chemometric analysis of hydro-chemical data of an alluvial river—A case study. Water, Air, and Soil Pollution, 170, 383–404. doi:10.1007/s11270-005-9010-0.

    Article  Google Scholar 

  • Singh, V. K., Singh, K. P., & Mohan, D. (2005c). Status of heavy metals in water and bed sediments of River Gomti—A tributary of the Ganga River, India. Environmental Monitoring and Assessment, 105, 43–67. doi:10.1007/s10661-005-2816-9.

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., Sinha, S., & Singh, V. K. (2007a). Multi-block data modeling for characterization of soil contamination: A case study. Water, Air, and Soil Pollution, 185, 79–93. doi:10.1007/s11270-007-9432-y.

    Article  CAS  Google Scholar 

  • Singh, K. P., Singh, V. K., Malik, A., Sharma, N., Murthy, R. C., & Kumar, R. (2007b). Hydrochemistry of wet atmospheric precipitation over an urban area in Northern Indo-Gangetic Plains. Environmental Monitoring and Assessment, 131, 237–254. doi:10.1007/s10661-006-9472-6.

    Article  CAS  Google Scholar 

  • Sood, A., Singh, K. D., Pandey, P., & Sharma, S. (2008). Assessment of bacterial indicators and physicochemiocal parameters to investigate pollution status of Gangetic river system of Uttarakhand (India). Ecological Indicators, 8(5), 709–717. doi:10.1016/j.ecolind.2008.01.001.

    Article  Google Scholar 

  • Sundaray, S. K., Panda, U. C., Nayak, B. B., & Bhatta, D. (2006). Multivariate statistical techniques for the evaluation of the spatial and temporal variations in water quality of the Mahanadi river-estuarine system (India)—A case study. Environmental Geochemistry and Health, 28, 317–330. doi:10.1007/s10653-005-9001-5.

    Article  CAS  Google Scholar 

  • Tallon, P., Magajna, B., & Lofranco, C. (2005). Microbial indicators of faecal contamination in water: A current perspective. Water, Air, and Soil Pollution, 166, 139–166. doi:10.1007/s11270-005-7905-4.

    Article  CAS  Google Scholar 

  • Tiwary, R. K., & Dhar, B. B. (1994). Environmental pollution from coal mining activities in Damodar River basin, India. Mine Water and the Environment, 13, 1–10.

    Google Scholar 

  • Venter, S. N., Stenyberg, M. C., De Wet, C. M. E., Hohls, D., Du Plessis, G., & Kfir, R. (1997). A situational analysis of the microbial water quality in a periurban catchment in South Africa. Water Science and Technology, 35(11–12), 119–124. doi:10.1016/S0273-1223(97)00245-X.

    Article  Google Scholar 

  • Wang, M., Webber, M., Finlayson, B., & Barnett, J. (2008). Rural industries and water pollution in China. Journal of Environmental Management, 86, 648–659. doi:10.1016/j.jenvman.2006.12.019.

    Article  CAS  Google Scholar 

  • WHO (2006). Guidelines for drinking water quality. First addendum to third edition (Vol. 1). Recommendations. ISBN 924-15-4696-4.

  • Yidana, S. M., Ophoria, D., & Banoeng-Yakubob, B. (2008). A multivariate statistical analysis of surface water chemistry data—The Ankobra Basin, Ghana. Journal of Environmental Management, 86, 80–87. doi:10.1016/j.jenvman.2006.11.023.

    Article  CAS  Google Scholar 

  • Zar, J. H. (1999). Biostatistical analysis (4th ed.). Singapore: Pearson Education.

    Google Scholar 

  • Zheng, N., Wang, Q., Liang, Z., & Zheng, D. (2008). Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China. Environmental Pollution, 154, 135–142. doi:10.1016/j.envpol.2008.01.001.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goutam Chandra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, S.K., Bhattacharjee, I. & Chandra, G. Water quality assessment near an industrial site of Damodar River, India. Environ Monit Assess 161, 177–189 (2010). https://doi.org/10.1007/s10661-008-0736-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0736-1

Keywords

Navigation