Skip to main content
Log in

Arsenic in shallow aquifer in the eastern region of Bangladesh: insights from principal component analysis of groundwater compositions

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Probable sources and mechanisms of arsenic (As) release in shallow aquifer in eastern Bangladesh are evaluated using statistical analysis of groundwater compositions. Dissolved As in 39 samples ranged from 8.05 to 341.5 μg/L with an average of 95.14 μg/L. Ninety seven percent of wells exceed the WHO limit (10 μg/L) for safe drinking water. Principal component analysis is applied to reduce 16 measured compositional variables to five significant components (principal components—PCs) that explain 86.63% of the geochemical variance. Two component loadings, namely PC 1 and PC 2 (45.31% and 23.05%) indicate the natural processes within the aquifers in which organic matter is a key reactant in the weathering reactions. Four groups of wells are defined by the PCA and each group of wells represents distinct physicochemical characteristics. Among them, group III groundwater shows higher As concentration together with high concentrations of Fe, Mn, dissolved organic carbon, \(\text{PO}_{4}^{3-}\) and \(\text{HCO}_{3}^{-}\) than groups I and II. Speciation calculations suggest that only wells of group III are saturated with respect to siderite, and all groups of samples are supersaturated with respect of rhodochrosite. The relationship of As with these parameters in the different groups of wells of the study area suggests that reductive dissolution of Fe–Mn oxyhydroxides with microbially mediated degradation of organic matter is considered to be the dominant processes to release As in groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AAN (1999). Arsenic contamination of groundwater in Bangladesh: Interim report of the research at Samta Village. Bangladesh: Asian Arsenic Network, Research Group for Applied Geology and the National Institute for Preventive and Social Medicine.

    Google Scholar 

  • Acharyya, S. K., Chakraborty, P., Lahiri, S., Raymahashay, B. C., Guha, S., & Bhowmik, A. (1999). Arsenic poising in the Ganges Delta. Nature, 401, 545. doi:10.1038/44052.

    Article  CAS  Google Scholar 

  • Ahmed, K. M., Bhattacharya, P., Hasan, M. A., Akhter, S. H., Alam, S. M. M., Bhuyian, M. A. H., et al. (2004). Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: An overview. Applied Geochemistry, 19, 181–200. doi:10.1016/j.apgeochem.2003.09.006.

    Article  CAS  Google Scholar 

  • Ahmed, K. M., Hoque, M., Hasan, M. K., Ravenscroft, P., & Chowdhury, L. R. (1998). Occurrence and origin of water well CH4 gas in Bangladesh. Journal of the Geological Society of India, 51, 697–708.

    CAS  Google Scholar 

  • Akai, J., Izumi, K., Fukuhara, H., Masuda, H., Nakano, S., Yoshimura, T., et al. (2004). Mineralogical and geomicrobiological investigations on groundwater arsenic enrichment in Bangladesh. Applied Geochemistry, 19, 215–230. doi:10.1016/j.apgeochem.2003.09.008.

    Article  CAS  Google Scholar 

  • Allison, J. D., Brown, D. S., & Novo-Gradac, K. J. (1990). MINTEQA2/PRODEFA2A geochemical assessment model for environmental systems version 3.0 user’s manual: Environmental research laboratory. Athens, Georgia: Office of Research and Development, U.S. Environmental Protection Agency.

    Google Scholar 

  • Anawer, M. H., Akai, J., Komaki, K., Terao, H., Yoshimura, T., Ishizuka, T., et al. (2003). Geochemical occurrence of arsenic in groundwater of Bangladesh: Sources and mobilization processes. Journal of Geochemical Exploration, 77, 109–131. doi:10.1016/S0375-6742(02)00273-X.

    Article  Google Scholar 

  • BADC (2002). Survey report on irrigation equipment and irrigated area in Boro/2001 season. Bangladesh Agricultural Development Corporation.

  • Banfield, J. F., Barker, W. W., Welch, S. A., & Taunton, A. (1999). Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere. Proceedings of the National Academy of Sciences of the United States of America, 96, 3404–3411. doi:10.1073/pnas.96.7.3404.

    Article  CAS  Google Scholar 

  • Berg, M., Trang, P. T. K., Stengel, C., Buschmann, J., Viet, P. H., Dan, N. V., et al. (2008). Hydrological and sedimentary controls leading to arsenic contamination of groundwater in the Hanoi area, Vietnam: The impact of iron–arsenic ratios, peat, river bank deposits, and excessive groundwater abstraction. Chemical Geology, 249, 91–112. doi:10.1016/j.chemgeo.2007.12.007.

    Article  CAS  Google Scholar 

  • Berner, R. A. (1981). A new geochemical classification of sedimentary environments. Journal of Sedimentary Petrology, 51, 359–365.

    CAS  Google Scholar 

  • BGS & DPHE (2001). Arsenic contamination of groundwater in Bangladesh (Vol. 2). Final Report, BGS Technical Report WC/00/19.

  • Bhattacharya, P., Chatteriee, D., & Jacks, G. (1997). Occurrence of arsenic contaminated groundwater in alluvial aquifers from the Delta Plains, eastern India: Options for safe drinking water supply. International Journal of Water Resource Management, 13, 79–92.

    Article  Google Scholar 

  • Bhattacharya, P., Claesson, M., Bundschuh, J., Sracek, O., Fagerberg, J., Jacks, G., et al. (2006). Distribution and mobilization of arsenic in the Río Dulce alluvial aquifers in Santiago del Estero Province, Argentina. Science of the Total Environment, 358, 97–120.

    Article  CAS  Google Scholar 

  • Bhattacharya, P., Jacks, G., Ahmed, K. M., Khan, A. A., & Routh, J. (2002). Arsenic in groundwater of the Bengal Delta Plain aquifers in Bangladesh. Bulletin of Environmental Contamination and Toxicology, 69, 538–545.

    Article  CAS  Google Scholar 

  • Bhattacharya, P., Welch, A. H., Ahmed, K. M., Jacks, G., & Naidu, R. (2004). Arsenic in groundwater of sedimentary aquifers. Applied Geochemistry, 19, 163–167.

    Article  CAS  Google Scholar 

  • Bhattacharya, P., Welch, A. H., Stollenwerk, K. G., McLaughlin, M. J., Bundschuh, J., & Panaullah, G. (2007). Arsenic in environment: Biology and chemistry. Science of the Total Environment, 379, 109–120.

    Article  CAS  Google Scholar 

  • Buschmann, J., Berg, M., Stengel, C., Winkel, L., Sampson, M. L., Trang, P. T. K., et al. (2008). Contamination of drinking water resources in the Mekong delta floodplains: Arsenic and other trace metals pose serious health risks to population. Environmental International, 34, 756–764. doi:10.1016/j.envint.2007.12.025.

    Article  CAS  Google Scholar 

  • Charlet, L., & Polya, D. A. (2006). Arsenic in shallow, reducing groundwaters in southern Asia: An environmental health disaster. Elements, 2, 91–96.

    Article  Google Scholar 

  • Clark, I., & Fritz, P. (1997). Environmental isotopes in hydrology. Boca Raton, New York: Lewis.

    Google Scholar 

  • Cloutier, V., Lefebvre, R., Therrien, R., & Savard, M. M. (2008). Multivariate statistical analysis of geological data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. Journal of Hydrology, 353, 294–313.

    CAS  Google Scholar 

  • Davis, J. (1989). Pilot study into optimum well design: IDA 4000 deep tubewell project (Vol. 2). The geology of the alluvial aquifers of Central Bangladesh. British Geological Survey Technical Report WD/89/9.

  • Davis, J. (1995). The hydrochemistry of alluvial aquifers in central Bangladesh. In H. Nash & G. J. H. McCall (Eds.), Groundwater quality (pp. 9–18). London: Chapman and Hall.

    Google Scholar 

  • Davis, J. C. (1986). Statistics and data analysis in geology. New York: Wiley.

    Google Scholar 

  • Dhar, R. K., Biswas, B. K., Samanta, G., Mandal, B. K., Chakraborty, D., Roy, S., et al. (1997). Groundwater arsenic calamity in Bangladesh. Current Science, 73, 48–59.

    CAS  Google Scholar 

  • Dowling, C. B., Poreda, R. J., Basu, A. R., Peters, S. L., & Aggarwal, P. K. (2002). Geochemical study of arsenic release mechanisms in the Bengal Basin groundwater. Water Resource Research, 38(9), 1173. doi:10.1029/2001WR000968.

    Article  Google Scholar 

  • FAO (1999). FAO’s information system on water and agriculture, Rome, Italy. http://www.fao.org/ag/agl/aglw/aquastat/countries/bangladesh/index.stm.

  • Farnham, I. M., Johannesson, K. H., Singh, A. K., Hodge, V. F., & Stetzenbach, K. J. (2003). Factor analytical approaches for evaluating groundwater trace element chemistry data. Analytica Chimica Acta, 490, 123–138.

    Article  CAS  Google Scholar 

  • Guo, H., Yang, S., Tang, X., Li, Y., & Shen, Z. (2008). Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hrtao Basin. Science of the Total Environment, 393, 131–144.

    Article  CAS  Google Scholar 

  • Halim, M. A., Majumder, R. K., Nessa, S. A., Hiroshiro, Y., Uddin, M. J., Shimada, J., et al. (2008a). Hydrogeochemistry and arsenic contamination of groundwater in the Ganges Delta Plain, Bangladesh. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2008.09.046.

    Google Scholar 

  • Halim, M. A., Majumder, R. K., Nessa, S. A., Oda, K., Hiroshiro, Y., Saha, B. B., et al. (2008b). Groundwater contamination with arsenic in Sherajdikhan, Bangladesh: Geochemical and hydrological implications. Environmental Geology. doi:10.1007/s00254-008-1493-8.

    Google Scholar 

  • Hasan, M. A., Ahmed, K. M., Sracek, O., Bhattacharya, P., von Bromssen, M., Broms, S., et al. (2007). Arsenic in shallow groundwater of Bangladesh: Investigations from three different physiographic settings. Hydrological Journal, 15, 1507–1522.

    CAS  Google Scholar 

  • Hossain, M. F. (2006). Arsenic contamination in Bangladesh—an overview. Agriculture, Ecosystems & Environment, 113, 1–16.

    Article  CAS  Google Scholar 

  • Islam, F. S., Gaultm, A. G., Boothman, C., Polya, D. A., Charnock, J. M., Chatterjee, D., et al. (2004). Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature, 430, 68–71.

    Article  CAS  Google Scholar 

  • Jolliffe, I. T. (2002). Principal component analysis. NY: Springer.

    Google Scholar 

  • Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20, 141–151.

    Article  Google Scholar 

  • Komor, S. C., & Anderson, H. W., Jr. (1993). Nitrogen isotope as indicators of nitrate source in Minnesota sand-plain aquifers. Ground Water, 31, 260–271.

    Article  CAS  Google Scholar 

  • Mallik, S., & Rajagopal, N. (1996). Groundwater development in the arsenic-affected alluvial belt of West Bengal—some questions. Currier Science, 70, 956–958.

    Google Scholar 

  • Mandal, B. K., Roy Chowdhury, T., Samanta, G., Basu, G. K., Chowdhury, P. P., Chanda, C. R., et al. (1996). Arsenic in groundwater in seven districts of West Bengal, India: The biggest arsenic calamity in the world. Currier Science, 70, 976–986.

    CAS  Google Scholar 

  • McArthur, J. M., Banerjee, D. M., Hudson-Edwards, K. A., Mishra, R., Purohit, R., Ravenscroft, P., et al. (2004). Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: The example of West Bengal and its worldwide implications. Applied Geochemistry, 19, 1255–1293.

    Article  CAS  Google Scholar 

  • McArthur, J. M., Ravencroft, P., Safiullah, S., & Thirlwall, M. F. (2001). Arsenic in groundwater: Testing pollution mechanism for sedimentary aquifers in Bangladesh. Water Resource Research, 37, 109–117.

    Article  CAS  Google Scholar 

  • Melloul, A., & Collin, M. (1992). The ‘principal component’ statistical methods as a complementary approach to geochemical methods in water quality factor identification; application to the Coastal Plain aquifer of Israel. Journal of Hydrology, 140, 49–73.

    Article  CAS  Google Scholar 

  • Mencio, A., & Mas-Pla, J. (2008). Assessment by multivariate analysis of groundwater–surface water interactions in urbanized Mediterranean streams. Journal of Hydrology, 352, 355–366.

    Google Scholar 

  • Mukherjee, A., & Fryar, A. E. (2008). Deeper groundwater chemistry and geochemical modeling of the arsenic affected western Bengal basin, West Bengal, India. Applied Geochemistry, 23, 863–894.

    Article  CAS  Google Scholar 

  • Mukherjee, A., Fryar, A. E., & Howell, P. D. (2007). Regional hydrostratigraphy and groundwater flow modeling of the arsenic contaminated aquifers of the western Bengal basin, West Bengal, India. Hydrological Journal, 15, 1397–1418.

    CAS  Google Scholar 

  • Nahar, N. (2007). Impacts of arsenic contamination in groundwater: Case study of some villages in Bangladesh. Environment and Sustainable Development. doi:10.1007/s10668-007-9130-3.

    Google Scholar 

  • Nickson, R. T., McArthur, J. M., Burgess, W. G., Ahmed, K. M., Ravenscroft, P., & Rahman, M. (1998). Arsenic poisoning of Bangladesh groundwater. Nature, 395, 338.

    Article  CAS  Google Scholar 

  • Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G., & Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15, 403–413.

    Article  CAS  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). Users guide to PHREEQC (version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical modeling. US Geological Survey Water Resources Investigations Report, 99-4259.

  • Perrin, J. (1998). Arsenic in groundwater at Meherpur, Bangladesh: A vertical pore water profile and rock/water interactions. M. Sc. Thesis (unpublished), University College London.

  • Polizzotto, M. L., Harvey, C. F., Li, G. C., Badruzzman, B., Ali, A., Newville, M., et al. (2006). Solid-phases and desorption processes of arsenic within Bangladesh sediments. Chemical Geology, 228, 97–111.

    Article  CAS  Google Scholar 

  • Postma, D., & Jakobsen, R. (1996). Redox zonation: Equilibrium constraints on the \(\text{Fe(III)/SO}_{4}^{2-}\) reduction interface. Geochimica et Cosmochimica Acta, 60, 3169–3175.

    Article  Google Scholar 

  • Ravenscroft, P., Burgess, W. G., Ahmed, K. M., Burren, M., & Perrin, J. (2005). Arsenic in groundwater of the Bengal basin, Bangladesh: Distribution, field relations, and hydrogeologic setting. Hydrological Journal, 13, 727–751.

    CAS  Google Scholar 

  • Ravenscroft, P., McArthur, J. M., & Hoque, B. A. (2001). Geochemical and paleohydrological controls on pollution of groundwater by fourth international conference on arsenic exposure and health effects. San Diego, California, 18–22 June 2000.

  • Saether, O. M., & Caritat, P. (1997). Geochemical processes weathering and groundwater recharge in catchments. Rotterdam/Rookfield: AA Balkema.

    Google Scholar 

  • Schot, P. P., & van der Wal, J. (1992). Human impact on regional groundwater composition through intervention in natural flow patterns and changes in land use. Journal of Hydrology, 134, 297–313.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Smith, A. H., Lingas, E. O., & Rahman, M. (2000). Contamination of drinking-water by arsenic in Bangladesh: A public health emergency. Bulletin of World Health Organization, 78, 1093–1103.

    CAS  Google Scholar 

  • WHO (World Health Organization) (2004). Guidelines for drinking water quality recommendations (Vol. 1, pp. 515). Geneva: WHO.

    Google Scholar 

  • Zahid, A., Hassan, M., Qumrul Balke, K. D., Flegr, M., & Clark David, W. (2008). Groundwater chemistry and occurrence of arsenic in the Meghna floodplain aquifer, southeastern Bangladesh. Environmental Geology, 54(6), 247–1260. doi:10.1007/s00254-007-0907-3.

    Article  Google Scholar 

  • Zheng, Y., Stute, M., Van Geen, A., Gavrieli, I., Dhar, R., Simpson, H. J., et al. (2004). Redox control of arsenic mobilization in Bangladesh groundwater. Applied Geochemistry, 19, 201–214.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Abdul Halim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halim, M.A., Majumder, R.K., Nessa, S.A. et al. Arsenic in shallow aquifer in the eastern region of Bangladesh: insights from principal component analysis of groundwater compositions. Environ Monit Assess 161, 453–472 (2010). https://doi.org/10.1007/s10661-009-0760-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0760-9

Keywords

Navigation